Subscribe to RSS
DOI: 10.1055/s-0040-1705901
Dearomatization–Rearomatization Strategy for Palladium-Catalyzed C–N Cross-Coupling Reactions
We are grateful for financial support provided by the National Natural Science Foundation of China (NSFC, Grant Number 21971093), the International Joint Research Centre for Green Catalysis and Synthesis (Grant numbers 18JR3RA284 and 2016B01017), and the 111 project for support of our research. We also thank the Canada Research Chairs (CRC, Tier I) foundation, the E.B. Eddy Endowment Fund, and the Fonds de Recherche Nature et Technologies (FQRNT) for support provided to C.-J. Li.
Dedicated to Professor Barry. M. Trost on the occasion of his 80th birthday
Abstract
Substituted aromatic compounds play important roles in materials, biological agents, dyes, etc. Thus, the synthesis of substituted aromatic compounds has been a hot topic throughout the history of organic chemistry. Traditionally, the Friedel–Crafts reaction was a powerful tool for synthesizing substituted aromatic compounds. In recent decades, metal-catalyzed cross-coupling reactions were well developed via carbon–heteroatom bond cleavage, however, having difficulties towards some strong bonds, such as C(Ar)–OH. To overcome such challenges, newer strategies are needed. In this review, we summarize the recent efforts in the development of dearomatization–rearomatization strategy for cross-coupling reactions via C(Ar)–O bond cleavage.
1 Introduction
2 Dearomatization–Rearomatization Strategy for Cross-Coupling of Phenols
3 Dearomatization–Rearomatization Strategy for Cross-Coupling of Biphenols
4 Dearomatization–Rearomatization Strategy for Cross-Coupling of Diphenyl Ethers
5 Dearomatization–Rearomatization Strategy for Cross-Coupling of Indoles
6 Summary
Key words
dearomatization–rearomatization strategy - C(Ar)–O bond cleavage - cross-coupling reaction - transition-metal catalyzed - aromatic compoundsPublication History
Received: 11 July 2020
Accepted after revision: 24 July 2020
Article published online:
07 September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Janovec L, Janockova J, Matejova M, Konkolova E, Paulikova H, Lichancova D, Junosova L, Hamulakova S, Imrich J, Kozurkova M. Bioorg. Chem. 2019; 83: 487
- 2 Cui J, Zhang S. Color. Technol. 2018; 134: 381
- 3 Niu H, Kang H, Cai J, Wang C, Bai X, Wang W. Polym. Chem. 2011; 2: 2804
- 4 Sanjeeva Rao K, Wu T.-S. Tetrahedron 2012; 68: 7735
- 5 Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM. Chem. Rev. 2010; 110: 3552
- 6 Zeng H, Qiu Z, Dominguez-Huerta A, Hearne Z, Chen Z, Li C.-J. ACS Catal. 2017; 7: 510
-
7
Barker RS.
US3272865, 1966
- 8 Ono Y, Ishida H. J. Catal. 1981; 72: 121
- 9 Chen Z, Zeng H, Girard SA, Wang F, Chen N, Li C.-J. Angew. Chem. Int. Ed. 2015; 54: 14487
- 10 Chen Z, Zeng H, Gong H, Wang H, Li C.-J. Chem. Sci. 2015; 6: 4174
- 11 Tomkins P, Valgaeren C, Adriaensen K, Cuypers T, De Vos DE.. J. Catal. 2019; 371: 207
- 12 Li J.-S, Qiu Z, Li C.-J. Adv. Synth. Catal. 2017; 359: 3648
- 13 Cuypers T, Tomkins P, De Vos DE. Catal. Sci. Technol. 2018; 8: 2519
- 14 Qiu Z, Lv L, Li J, Li C.-C, Li C.-J. Chem. Sci. 2019; 10: 4775
- 15 Dominguez-Huerta A, Perepichka I, Li C.-J. ChemSusChem 2019; 12: 2999
- 16 Chen X, Yang Z, Chen X, Liang W, Zhu Z, Xie F, Li Y. J. Org. Chem. 2019; 85: 508
- 17 St Amant AH, Frazier CP, Newmeyer B, Fruehauf KR, Read de Alaniz J. Org. Biomol. Chem. 2016; 14: 5520
- 18 Cao D, Yu J, Zeng H, Li C.-J. J. Agric. Food Chem. 2020; in press;
- 19 Sanderson K. Nature 2011; 474: S12
- 20 Huber GW, Iborra S, Corma A. Chem. Rev. 2006; 106: 4044
- 21 Zeng H, Cao D, Qiu Z, Li C.-J. Angew. Chem. Int. Ed. 2018; 57: 3752
- 22 Wang M, Gutierrez OY, Camaioni DM, Lercher JA. Angew. Chem. Int. Ed. 2018; 57: 3747
- 23 Cao D, Zeng H, Li C.-J. ACS Catal. 2018; 8: 8873
- 24 Dou Q, Li C.-J, Zeng H. Chem. Sci. 2020; 11: 5740
- 25 Wang Z, Zeng H, Li C.-J. Org. Lett. 2019; 21: 2302