Synthesis 2021; 53(08): 1489-1494 DOI: 10.1055/s-0040-1705961
Nickel-Catalyzed Reductive Allylation of Aldehydes with Allyl Acetates
Hiroyuki Suzuki
,
Eiji Yamaguchi∗
,
Akichika Itoh∗
The work was financially supported by the OGAWA Science and Technology Foundation (EY) and a Ministry of Education, Culture, Sports, Science, and Technology (MEXT) Grant-in-Aid for Young Scientists (Grant Number 18K14871) (to E.Y.).
Abstract
Carbonyl allylation reactions constitute an important step in the formation of carbon–carbon reactions, and involve various related reactions that chiefly use allylmetal reagents. This report presents a nickel-catalyzed carbonyl allylation reaction using allyl acetate, which produces homoallyl alcohols in moderate to good yields, as an efficient methodology under reductive coupling conditions.
Key words
reductive allylation -
nickel complex -
allyl acetate -
carbonyl addition -
transition-metal catalysis
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1705961.
Supporting Information
Publication History
Received: 01 September 2020
Accepted after revision: 01 October 2020
Article published online: 02 December 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Comprehensive Organic Synthesis , 2nd ed., Vol. 1 and 2.
Knochel P,
Molander GA.
Elsevier; Oxford: 2014
For reviews on the Grignard reaction, see:
2a
Zhu M,
Liu L,
Yu H.-T,
Zhang W.-X,
Xi Z.
Chem. Eur. J. 2018; 24: 19122
2b
Ziegler DS,
Wei B,
Knochel P.
Chem. Eur. J. 2018; 25: 2695
2c
Douchez A,
Geranurimi A,
Lubell WD.
Acc. Chem. Res. 2018; 51: 2574
2d
Westerhausen M,
Koch A,
Gçrls H,
Krieck S.
Chem. Eur. J. 2016; 23: 1456
2e
Bao RL.-Y,
Zhao R,
Shi L.
Chem. Commun. 2015; 51: 6884
2f
Klatt T,
Markiewics JT,
Sämann C,
Knochel P.
J. Org. Chem. 2014; 79: 4253
2g
Mongin F,
Harrison-Marchand A.
Chem. Rev. 2013; 113: 7563
2h
Seyferth D.
Organometallics 2009; 28: 1598
2i
Ila H,
Baron O,
Wagner AJ,
Knochel P.
Chem. Lett. 2006; 35: 2
2j
Ila H,
Baron O,
Wagner AJ,
Knochel P.
Chem. Commun. 2006; 583
For reviews on allyl Grignard reagents, see:
3a
Yamamoto Y,
Asao N.
Chem. Rev. 1993; 93: 2207
3b
Li C.-J.
Chem. Rev. 1993; 93: 2023
3c
Li C.-J.
Tetrahedron Lett. 1996; 52: 5643
3d
Kennedy JW. J,
Hall DG.
Angew. Chem. Int. Ed. 2003; 42: 4732
4
Huo H.-X,
Duvall JR,
Huanga M.-Y,
Hong R.
Org. Chem. Front. 2014; 1: 303
5
Yus M,
Gonzalez-Gómez JC,
Foubelo F.
Chem. Rev. 2013; 113: 5595
6
Elford TG,
Hall DG.
Synthesis 2010; 893
7a
Chen W,
Yang Q,
Zhou T,
Tian Q,
Zhang G.
Org. Lett. 2015; 17: 5236
7b
Kang JY,
Connell BT.
J. Am. Chem. Soc. 2010; 132: 7826
7c
Miller JJ,
Sigman MS.
J. Am. Chem. Soc. 2007; 129: 2752
7d
Lee J.-Y,
Miller JJ,
Hamilton SS,
Sigman MS.
Org. Lett. 2005; 7: 1837
8
Spielmann K,
Niel G,
de Figueiredo RM,
Campagne J.-M.
Chem. Soc. Rev. 2018; 47: 1159
9
Tsuji Y,
Mukai T,
Kondo T,
Watanabe Y.
J. Organomet. Chem. 1989; 369: C51
10a
Kim IS,
Ngai M.-Y,
Krische MJ.
J. Am. Chem. Soc. 2008; 130: 6340
10b
Kim IS,
Ngai M.-Y,
Krische MJ.
J. Am. Chem. Soc. 2008; 130: 14891
10c
Han SB,
Kim IS,
Krische MJ.
Chem. Commun. 2009; 7278
10d
Lu Y,
Kim I.-S,
Hassan A,
Del Valle DJ,
Krische MJ.
Angew. Chem. Int. Ed. 2009; 48: 5018
10e
Hassan A,
Lu Y,
Krische MJ.
Org. Lett. 2009; 11: 3112
10f
Schmitt DC,
Dechert-Schmitt A.-MR,
Krische MJ.
Org. Lett. 2012; 14: 6302
10g
Garza VJ,
Krische MJ.
J. Am. Chem. Soc. 2016; 138: 3655
10h
Cabrera JM,
Tauber J,
Krische MJ.
Angew. Chem. Int. Ed. 2018; 57: 1390
10i
Kim SW,
Wurm T,
Brito GA,
Jung W.-O,
Zbieg JR,
Stivala CE,
Krische MJ.
J. Am. Chem. Soc. 2018; 140: 9087
10j
Cabrera JM,
Tauber J,
Zhang W,
Xiang M,
Krische MJ.
J. Am. Chem. Soc. 2018; 140: 9392
10k
Kim SW,
Schwartz LA,
Zbieg JR,
Stivala CE,
Krische MJ.
J. Am. Chem. Soc. 2019; 141: 671
10l
Brito GA,
Jung W.-O,
Yoo M,
Krische MJ.
Angew. Chem. Int. Ed. 2019; 58: 18803
For selected recent examples of Krische allylation in natural product synthesis, see:
11a
Ketcham JM,
Volchkov I,
Chen T.-Y,
Blumberg PM,
Kedei N,
Lewin NE,
Krische MJ.
J. Am. Chem. Soc. 2016; 138: 13415
11b
Shin I,
Hong S,
Krische MJ.
J. Am. Chem. Soc. 2016; 138: 14246
11c
Roane J,
Wippich J,
Ramgren SD,
Krische MJ.
Org. Lett. 2017; 19: 6634
11d
Cabrera JM,
Krische MJ.
Angew. Chem. Int. Ed. 2019; 58: 10718
12a
Denmark SE,
Nguyen ST.
Org. Lett. 2009; 11: 781
12b
Denmark SE,
Matesich ZD,
Nguyen ST,
Sephton SM.
J. Org. Chem. 2018; 83: 23
13
Ishida S,
Suzuki H,
Uchida S,
Yamaguchi E,
Itoh A.
Eur. J. Org. Chem. 2019; 7483
For reviews on reductive coupling, see:
14a
Carnahan EM,
Protasiewicz JD,
Lippard SJ.
Acc. Chem. Res. 1993; 26: 90
14b
Montgomery J.
Angew. Chem. Int. Ed. 2004; 43: 3890
14c
Reichard HA,
McLaughlin M,
Chen MZ,
Micalizio GC.
Eur. J. Org. Chem. 2010; 391
14d
Holmes M,
Schwartz LA,
Krische MJ.
Chem. Rev. 2018; 118: 6026
14e
Waldvogel SR,
Lips S,
Selt M,
Riehl B,
Kampf CJ.
Chem. Rev. 2018; 118: 6706
For selected examples of the reductive coupling reaction, see:
14f
Durandetti M,
Gosmini C,
Périchon J.
Tetrahedron 2007; 63: 1146
14g
Tan Z,
Wan X,
Zang Z,
Qian Q,
Deng W,
Gong H.
Chem. Commun. 2014; 50: 3827
14h
Zhao C,
Tan Z,
Liang Z,
Deng W,
Gong H.
Synthesis 2014; 46: 1901
14i
Wotal AC,
Ribson RD,
Weix DJ.
Organometallics 2014; 33: 5874
14j
Caputo JA,
Naoddovic M,
Weix DJ.
Synlett 2015; 26: 323
14k
Hansen EC,
Li C,
Yang S,
Pedro D,
Weix DJ.
J. Org. Chem. 2017; 82: 7085
14l
Huihui KM. M,
Shrestha R,
Weix DJ.
Org. Lett. 2017; 17: 340
14m
Garcia KJ,
Gilbert MM,
Weix DJ.
J. Am. Chem. Soc. 2019; 141: 1823
14n
Perkins RJ,
Hughes AJ,
Weix DJ,
Hansen EC.
Org. Process Res. Dev. 2019; 23: 1746
14o
Gualandi A,
Rodeghiero G,
Faraone A,
Patuzzo F,
Marchini M,
Calogero F,
Perciaccante R,
Jansen TP,
Ceroni P,
Cozzi PG.
Chem. Commun. 2019; 55: 6838
15 The full details of the optimization studies are summarized in the Supporting Information.
16 When 1h was used as the substrate, a mixture of 3ha and reduction product 3da was obtained.
17
Yadav JS,
Reddy BV. S,
Krishna AD,
Sadasiv K,
Chary CJ.
Chem. Lett. 2003; 32: 248
18 Under allylation conditions, the reaction without allyl acetate gave the corresponding aldol product in the case of aliphatic aldehydes.
19 The evaluation of allyl acetate derivatives is summarized in the Supporting Information.
20a
Kobayashi Y,
Ikeda E.
J. Chem. Soc., Chem. Commun. 1994; 1789
20b
Trost BM,
Spagnol MD.
J. Chem. Soc., Perkin Trans. 1 1995; 2083
20c
Usmani SB,
Takahisa E,
Kobayashi Y.
Tetrahedron Lett. 1998; 39: 601
21 When the reaction was performed using a stoichiometric amount of Ni(cod)2 /bipyridyl without Zn0 , the desired reaction did not proceed. Therefore, the possibility that the formation of an allylzinc species is the key to the progress of the reaction cannot be ruled out at this time. The result was added to the Supporting Information.
22
Clot-Almenara L,
Rodríguez-Escrich C,
Osorio-Planes L,
Pericas MA.
J. Am. Chem. Soc. 2016; 6: 7647
23
Kaib PS. J,
Schreyer L,
Lee S,
Properzi R,
List B.
Angew. Chem. Int. Ed. 2016; 55: 13200
24
Jain P,
Antilla JC.
J. Am. Chem. Soc. 2010; 132: 11884
25
Sevrain N,
Volle J.-N,
Pirat J.-L,
Ayad T,
Virieux D.
Eur. J. Org. Chem. 2018; 2267
26
Yin J,
Stark RT,
Fallis IA,
Browne DL.
J. Org. Chem. 2020; 85: 2347
27
Li G.-I,
Zhao G.
J. Org. Chem. 2005; 11: 4272
28
Kumar VP,
Chandrasekhar S.
Org. Lett. 2013; 15: 3610