RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2021; 32(05): 517-520
DOI: 10.1055/s-0040-1706007
DOI: 10.1055/s-0040-1706007
cluster
The Power of Transition Metals: An Unending Well-Spring of New Reactivity
Copper-Catalyzed Ring Expansion of Vinyl Aziridines under Mild Conditions
This work was supported by the Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM) (K.S.), the ANR (ANR- 18-CE07-0038-01; E.T.), and the CNRS (Centre National de la Recherche Scientifique). Brigita Mudráková is kindly thanked for her help with the synthesis of some aziridines.
In expression of our respect to Professor Barry M. Trost on the occasion of his 80th birthday.
Abstract
Vinyl aziridines are versatile starting materials toward ring-expansion transformations. Such processes are widely used to give various medium or larger N-heterocycles of synthetic interest. This letter describes a copper-catalyzed ring expansion of vinyl aziridines to 3-pyrrolines by using a Cu(I) salt [(CuOTf)2·toluene or Cu(MeCN)4·PF6]. In particular, this transformation occurs under mild conditions (THF, rt).
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706007.
- Supporting Information
Publikationsverlauf
Eingereicht: 29. Oktober 2020
Angenommen nach Revision: 08. Dezember 2020
Artikel online veröffentlicht:
05. Januar 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Donald JR, Unsworth WP. Chem. Eur. J. 2017; 23: 8780
- 1b Clarke AK, Unsworth WP. Chem. Sci. 2020; 11: 2876
- 1c Mack DJ, Njardarson JT. ACS Catal. 2013; 3: 272
- 1d Huang C.-Y, Doyle AG. Chem. Rev. 2014; 114: 8153
- 1e Dauban P, Malik G. Angew. Chem. Int. Ed. 2009; 48: 9026
- 2 For a review, see: Ohno H. Chem. Rev. 2014; 114: 7784
- 3a Kaldas SJ, Kran E, Mück-Lichtenfeld C, Yudin AK, Studer A. Chem. Eur. J. 2020; 26: 1501
- 3b Zhao Q.-Q, Zhou X.-S, Xu S.-H, Wu Y.-L, Xiao W.-J, Chen J.-R. Org. Lett. 2020; 22: 2470
- 3c Wan S.-H, Liu S.-T. Tetrahedron 2019; 75: 1166
- 3d Singh D, Ha H.-J. Org. Biomol. Chem. 2019; 17: 3093
- 3e Wu A, Feng Q, Sung HH. Y, Williams ID, Sun J. Angew. Chem. Int. Ed. 2019; 58: 6776
- 3f Zhu C.-Z, Feng J.-J, Zhang J. Chem. Commun. 2018; 54: 2401
- 3g Jiang F, Yuan F.-R, Jin L.-W, Mei G.-J, Shi F. ACS Catal. 2018; 8: 10234 ; and references cited therein
- 4a Spielmann K, Tosi E, Lebrun A, Niel G, van der Lee A, de Figueiredo RM, Campagne J.-M. Tetrahedron 2018; 74: 6497
- 4b Spielmann K, van der Lee A, de Figueiredo RM, Campagne J.-M. Org. Lett. 2018; 20: 1444
- 5a Taylor RD, MacCoss M, Lawson AD. J. J. Med. Chem. 2014; 57: 5845
- 5b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 5c Aldeghi M, Malhotra S, Selwood DL, Chan AW. E. Chem. Biol. Drug Des. 2014; 83: 450
- 6a Brichacek M, Lee D, Njardarson JT. Org. Lett. 2008; 10: 5023
- 6b Brichacek M, Villalobos MN, Plichta A, Njardarson JT. Org. Lett. 2011; 13: 1110
- 6c Mack DJ, Njardarson JT. Chem. Sci. 2012; 3: 3321
- 6d Batory LA, McInnis CE, Njardarson JT. J. Am. Chem. Soc. 2006; 128: 16054
- 7a Mente PG, Heine HW. J. Org. Chem. 1971; 36: 3076
- 7b Pommelet JC, Chuche J. Can. J. Chem. 1976; 54: 1571
- 7c Borel D, Gelas-Mialhe Y, Vessière R. Can. J. Chem. 1976; 54: 1590
- 7d For a [4+1] access to 3-pyrrolines, see also: Wu Q, Hu J, Ren X, Zhou J. Chem. Eur. J. 2011; 17: 11553
- 8a Kobayashi Y, Taguchi T, Morikawa T, Tokuno E, Sekiguchi S. Chem. Pharm. Bull. 1980; 28: 262
- 8b Ferraris D, Young B, Cox C, Drury WJ. III, Dudding T, Leckta T. J. Org. Chem. 1998; 63: 6090
- 8c Pagenkopf BL, Krüger J, Stojanovic A, Carreira EM. Angew. Chem. Int. Ed. 1998; 37: 3124 ; See also the Njardarson mechanistic studies in reference 6 (c)
-
9 After a short screening of solvents (e.g., THF, CH2Cl2, toluene, hexane), THF was chosen to perform the transformation.
- 10 Desmarchelier A, Pereira de Sant’Ana D, Terrasson V, Campagne J.-M, Moreau X, Greck C, de Figueiredo RM. Eur. J. Org. Chem. 2011; 4046
- 11 Terrasson V, van der Lee A, de Figueiredo RM, Campagne J.-M. Chem. Eur. J. 2010; 16: 7875
- 12 Bao X, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 1995
- 13a Yoshida M, Easmin S, Al-Amin M, Hirai Y, Shishido K. Tetrahedron 2011; 67: 3194
- 13b Yoshida M, Maeyama Y, Al-Amin M, Hirai Y, Shishido K. J. Org. Chem. 2011; 76: 5813
- 13c Davies PW, Martin N. Org. Lett. 2009; 11: 2293
- 13d Chen D.-D, Hou X.-L, Dai L.-X. Tetrahedron Lett. 2009; 50: 6944
-
14
4-Benzyl-2-methyl-1-tosyl-2,5-dihydro-1H-pyrrole (6a): Typical Procedure
A flame-dried 10 mL flask equipped with a stirrer bar was charged with vinyl aziridine 1a (46 mg, 0.14 mmol, 1.00 equiv), (CuOTf)2·toluene (3.5 mg, 0.007 mmol, 0.05 equiv), and THF (0.7 mL), and the mixture was stirred for 2 h under argon at rt. The solvent evaporated under reduced pressure, and the crude product was purified by chromatography [silica gel, pentane–EtOAc (100:0 to 70:30)] to give a pale-yellow solid; yield: 28 mg (60%); mp 80–83 °C.
FTIR (neat): 1402, 1355, 1178, 1163, 1090, 993, 945, 858, 840, 765, 664 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.65–7.63 (m, 2 H), 7.27–7.20 (m, 5 H), 7.01–6.99 (m, 2 H), 5.19–5.17 (m, 1 H), 4.48–4.46 (m, 1 H), 4.04–3.90 (m, 2 H), 3.33–3.23 (m, 2 H), 2.43 (s, 3 H), 1.38 (d, J = 6.40 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 143.2, 137.6, 137.1, 134.8, 129.6 (2 C), 128.5 (2 C), 128.5 (2 C), 127.4 (2 C), 126.5, 126.3, 63.4, 56.6, 35.1, 22.9, 21.5. HRMS-ASAP: m/z [M + H]+ calcd for C19H22NO2S: 328.1371; found: 328.1381.
For selected reviews, see:
For some selected recent publications see:
For thermal rearrangements of 2-vinyl aziridines, see:
For related reactions involving Pt- or Au-catalyzed ring expansions of alkynyl aziridines, see: