Synlett 2021; 32(18): 1816-1825 DOI: 10.1055/s-0040-1706033
Additions to Racemates: A Strategy for Developing Asymmetric Cross-Coupling Reactions
,
Stephen P. Fletcher∗
F.W.G. is grateful to the National Research Fund, Luxembourg, for an AFR Ph.D. Grant (11588566); the EPSRC Doctoral Training Partnership (DTP) for a studentship (EP/N509711/1); and Vertex Pharmaceuticals for financial support.
Abstract
In this Account, the authors describe their progress in developing catalytic asymmetric C(sp3 )–C(sp3 ) and C(sp3 )–C(sp2 ) cross-coupling reactions. Whereas most catalytic enantioselective transformations rely on prochiral or meso starting materials, strategies that use racemic starting materials are rare. Key features of these reactions are efficient mechanisms for deracemization. Here, the authors present copper-catalyzed alkylation and rhodium-catalyzed Suzuki–Miyaura-type arylation reactions, their underlying mechanisms, and their applications in complex-molecule syntheses.
Key words
asymmetric catalysis -
arylboronic acids -
copper catalysis -
cross-coupling -
rhodium catalysis -
Suzuki–Miyaura reaction
Publikationsverlauf
Eingereicht: 01. März 2021
Angenommen nach Revision: 21. März 2021
Artikel online veröffentlicht: 12. April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Lovering F,
Bikker J,
Humblet C.
J. Med. Chem. 2009; 52: 6752
1b
Ritchie TJ,
Macdonald SJ. F.
Drug Discovery Today 2009; 14: 1011
2
Blakemore DC,
Castro L,
Churcher I,
Rees DC,
Thomas AW,
Wilson DM,
Wood A.
Nat. Chem. 2018; 10: 383
3
Steinreiber J,
Faber K,
Griengl H.
Chem. Eur. J. 2008; 14: 8060
4
Vedejs E,
Jure M.
Angew. Chem. Int. Ed. 2005; 44: 3974
5
Bhat V,
Welin ER,
Guo X,
Stoltz BM.
Chem. Rev. 2017; 117: 4528
6
Yamaguchi M,
Shima T,
Yamagishi T,
Hida M.
Tetrahedron Lett. 1990; 31: 5049
7
Trost BM,
Bunt RC.
J. Am. Chem. Soc. 1994; 116: 4089
8
Lu Z,
Ma S.
Angew. Chem. Int. Ed. 2008; 47: 258
9
Trost BM,
Thaisrivongs DA.
J. Am. Chem. Soc. 2008; 130: 14092
10
Moon PJ,
Wei Z,
Lundgren RJ.
J. Am. Chem. Soc. 2018; 140: 17418
11
Niyomchon S,
Audisio D,
Luparia M,
Maulide N.
Org. Lett. 2013; 15: 2318
12
Matsushita H,
Negishi E.-i.
J. Chem. Soc., Chem. Commun. 1982; 160
13
Norinder J,
Bäckvall JE.
Chem. Eur. J. 2007; 13: 4094
14
Langlois JB,
Alexakis A.
Chem. Commun. 2009; 3868
15
Langlois JB,
Emery D,
Mareda J,
Alexakis A.
Chem. Sci. 2012; 3: 1062
For a review, see:
16a
Maksymowicz RM,
Bissette AJ,
Fletcher SP.
Chem. Eur. J. 2015; 21: 5668
For reports, see
16b
Maksymowicz RM,
Roth PM. C,
Fletcher SP.
Nat. Chem. 2012; 4: 649
16c
Sidera M,
Roth PM. C,
Maksymowicz RM,
Fletcher SP.
Angew. Chem. Int. Ed. 2013; 52: 7995
16d
Roth PM. C,
Sidera M,
Maksymowicz RM,
Fletcher SP.
Nat. Protoc. 2014; 9: 104
17 You, H. Non-stabilized nucleophiles in Cu-catalyzed asymmetric synthesis. Doctoral dissertation, University of Oxford, Oxford, UK, 2016.
18
You H,
Rideau E,
Sidera M,
Fletcher SP.
Nature 2015; 517: 351
19
Rideau E,
You H,
Sidera M,
Claridge TD. W,
Fletcher SP.
J. Am. Chem. Soc. 2017; 139: 5614
20
Rideau E,
Fletcher SP.
Beilstein J. Org. Chem. 2015; 11: 2435
21
Karabiyikoglu S,
Brethomé AV,
Palacin T,
Paton RS,
Fletcher SP.
Chem. Sci. 2020; 11: 4125
22
Sidera M,
Fletcher SP.
Chem. Commun. 2015; 51: 5044
23
Goetzke FW,
van Dijk L,
Fletcher SP.
In
The Chemistry of Organoboron Compounds
.
Gandelman M,
Marek I.
Wiley; Chichester: 2019.
24
Suzuki A.
Angew. Chem. Int. Ed. 2011; 6722
25 Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Wiley-VCH; Weinheim: 2006
26
Takaya Y,
Ogasawara M,
Hayashi T,
Sakai M,
Miyaura N.
J. Am. Chem. Soc. 1998; 120: 5579
27
Menard F,
Chapman TM,
Dockendorff C,
Lautens M.
Org. Lett. 2006; 8: 4569
28
Sidera M,
Fletcher SP.
Nat. Chem. 2015; 7: 935
29
van Dijk L,
Ardkhean R,
Sidera M,
Karabiyikoglu S,
Sari O,
Claridge TD. W,
Lloyd-Jones GC,
Paton RS,
Fletcher SP.
Nat. Catal. 2021;
30
Schäfer P,
Palacin T,
Sidera M,
Fletcher SP.
Nat. Commun. 2017; 8: 15762
31
Cox PA,
Leach AG,
Campbell AD,
Lloyd-Jones GC.
J. Am. Chem. Soc. 2016; 138: 9145
32
Cook XA. F,
de Gombert A,
McKnight J,
Pantaine LR. E,
Willis MC.
Angew. Chem. Int. Ed. 2020; in press;
33a
Wallace DJ,
Baxter CA,
Brands KJ. M,
Bremeyer N,
Brewer SE,
Desmond R,
Emerson KM,
Foley J,
Fernandez P,
Hu W,
Keen SP,
Mullens P,
Muzzio D,
Sajonz P,
Tan L,
Wilson RD,
Zhou G,
Zhou G.
Org. Process Res. Dev. 2011; 15: 831
33b
Chung CK,
Bulger PG,
Kosjek B,
Belyk KM,
Rivera N,
Scott ME,
Humphrey GR,
Limanto J,
Bachert DC,
Emerson KM.
Org. Process Res. Dev. 2014; 18: 215
33c
Hughes DL.
Org. Process Res. Dev. 2017; 21: 1227
33d
Flick AC,
Leverett CA,
Ding HX,
McInturff E,
Fink SJ,
Helal CJ,
O’Donnell CJ.
J. Med. Chem. 2019; 62: 7340
34
González J,
van Dijk L,
Goetzke FW,
Fletcher SP.
Nat. Protoc. 2019; 14: 2972
35
Goetzke FW,
Mortimore M,
Fletcher SP.
Angew. Chem. Int. Ed. 2019; 58: 12128
36a
Matsumura Y,
Mori N,
Nakano T,
Sasakura H,
Matsugi T,
Hara H,
Morizawa Y.
Tetrahedron Lett. 2004; 45: 1527
36b
Pozarowska D.
Clin. Ophthalmol. 2010; 4: 1229
37
Kučera R,
Goetzke FW,
Fletcher SP.
Org. Lett. 2020; 22: 2991