Subscribe to RSS
DOI: 10.1055/s-0040-1706042
Photocatalysis: A Green Tool for Redox Reactions
We are very grateful to the DEHAUSSE Fellowship of the Department of Chemistry, University of Antwerp, for supporting Mr. Robin Cauwenbergh, and for a Francqui lecturer award to Professor Shoubhik Das.
Abstract
Reduction-and-oxidation (redox) reactions are one of the most utilized approaches for the synthesis of value-added compounds. With the growing awareness of green chemistry, researchers have searched for new and sustainable pathways for performing redox reactions. From this, a new field has gained tremendous attention, namely photoredox catalysis. Here, molecules can be easily oxidized or reduced with the use of one of Nature’s biggest resources: visible light. This tutorial paper gives the basics of photoredox catalysis along with limited examples to encourage further research in this blooming research area.
1 Introduction
2 Redox Chemistry
3 Photochemistry
3.1 Laws of Photochemistry
3.2 Principles
3.3 Examples
4 Photoredox Catalysis
4.1 General Principles
4.2 Classification of Redox Processes
4.3 Other Mechanistic Considerations
4.4 Stern–Volmer Plots
4.5 Photophysical Properties
4.6 Redox Potentials
5 Photocatalysts
5.1 Metal-Based Photocatalysts
5.2 Organic Dyes
5.3 Semiconductors
6 Dual Catalysis
7 Conclusions
Publication History
Received: 11 April 2021
Accepted after revision: 27 April 2021
Article published online:
09 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
- 2 Sheldon RA. ACS Sustainable Chem. Eng. 2018; 6: 32
- 3 American Chemical Society International Historic Chemical Landmarks. Antoine-Laurent Lavoisier: The Chemical Revolution. American Chemical Society; Washington: 1999. http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/lavoisier.html (accessed March 12, 2021)
- 4 Pan F, Wang Q. Molecules 2015; 20: 20499
- 5 Luther GW. III. Aquat. Geochem. 2010; 16: 395
- 6 Martynov IV. Russ. J. Inorg. Chem. 2008; 53: 579
- 7 Lu Y, Marshall NM. In Encyclopedia of Biophysics . Roberts GC. K. Springer; Heidelberg: 2013: 2207-2211
- 8 Sauthoff G. Angew. Chem. 2004; 116: 675
- 9 Allen JF, Alexciev K, Håkansson G. Curr. Biol. 1995; 5: 869
- 10 Smith MB, March J. March’s Advanced Organic Chemistry, Reactions, Mechanisms, and Structure, 8th ed. Wiley; Hoboken: 2007: 1439
- 11 Nishinaga T. In Organic Redox Systems, Systems, Properties, and Applications, Chap. 1 . Nishinaga T. Wiley; Hoboken: 2016: 1
- 12 Birch AJ. J. Chem. Soc. 1944; 430
- 13 Hoffmann N. Chem. Rev. 2008; 108: 1052
- 14 Sender M, Ziegenbalg D. Chem. Ing. Tech. 2017; 89: 1159
- 15 Dinda B. Lect. Notes Chem. 2017; 93: 315
- 16 Zimmerman HE. Pure Appl. Chem. 2006; 78: 2193
- 17 Natarajan A, Tsai CK, Khan SI, McCarren P, Houk KN, Garcia-Garibay MA. J. Am. Chem. Soc. 2007; 129: 9846
- 18 For an obituary, see: Nasini R, Brown R, Rée A, Miller WL, Hewitt JT, Dawson HM, Knecht E. J. Chem. Soc. 1926; 129: 993
- 19 Albini A. Photochemistry: Past, Present and Future . Springer; Berlin: 2016. Chap. 2, 9
- 20 Fukui K, Yonezawa T, Shingu H. J. Chem. Phys. 1952; 20: 722
- 21 Kasha M. Discuss. Faraday Soc. 1950; 9: 14
- 22 Sarkar D, Bera N, Ghosh S. Eur. J. Org. Chem. 2020; 2020: 1310
- 23 De Mayo P, Takeshita H. Can. J. Chem. 1963; 41: 440
- 24 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 25 Eibner A. Chem.-Ztg. 1911; 35: 753
- 26 Bruner L, Kozak J. Z. Elektrochem. 1911; 17: 354
- 27 Zhu S, Wang D. Adv. Energy Mater. 2017; 7: 1700841
- 28 Condie AG, González-Gómez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
- 29 Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
- 30 Xuan J, Cheng Y, An J, Lu L.-Q, Zhang X.-X, Xiao W.-J. Chem. Commun. 2011; 47: 8337
- 31 Cheng Y, Yang J, Qu Y, Li P. Org. Lett. 2012; 14: 98
- 32 Pac C, Ihama M, Yasuda M, Miyauchi Y, Sakurai H. J. Am. Chem. Soc. 1981; 103: 6495
- 33 Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
- 34 Zlotorzynska M, Sammis GM. Org. Lett. 2011; 13: 6264
- 35a Shibata T, Kabumoto A, Shiragami T, Ishitani O, Pac C, Yanagida S. J. Phys. Chem. 1990; 94: 2068
- 35b Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. Chem Int. Ed. 2015; 54: 8828
- 36 Zhao S.-F, Horne M, Bond AM, Zhang J. Phys. Chem. Chem. Phys. 2015; 17: 19247
- 37 Fukuzumi S.-i, Mochizuki S, Tanaka T. J. Phys. Chem. 1990; 94: 722
- 38 Pal A, Ghosh I, Sapra S, König B. Chem. Mater. 2017; 29: 5225
- 39 Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
- 40 Jiang H, Studer A. Angew. Chem. Int. Ed. 2017; 56: 12273
- 41 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 42 Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
- 43 Kochi JK. Pure Appl. Chem. 1991; 63: 255
- 44 Schilling W, Zhang Y, Sahoo PK, Sarkar SK, Gandhi S, Roesky HW, Das S. Green Chem. 2021; 23: 379
- 45 Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10915
- 46 Tarantino KT, Liu P, Knowles RR. J. Am. Chem. Soc. 2013; 135: 10022
- 47 Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2017: 2056
- 48 Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
- 49 Williams TM, Stephenson CR. J. In Visible Light Photocatalysis in Organic Chemistry, Chap. 3. Stephenson CR. J, Yoon TP, MacMillan DW. C. Wiley-VCH; Weinheim: 2018: 73
- 50 Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
- 51 A Great Tool for Fluorescence Quenching Studies and Stern–Volmer Analysis: the Story Behind our Automated Continuous-flow Platform (accessed Apr 1, 2021). https://www.noelresearchgroup.com/2018/07/11/a-great-tool-for-fluorescence-quenching-studies-and-stern-volmer-analysis-the-story-behind-our-automated-continuous-flow-platform
- 52 Gehlen MH. J. Photochem. Photobiol., C 2020; 42: 100338
- 53 Jones WE. Jr, Fox MA. J. Phys. Chem. 1994; 98: 5095
- 54 Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 55 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 56 Zhang Y, Schilling W, Riemer D, Das S. Nat. Protoc. 2020; 15: 822
- 57 Schilling W, Das S. ChemSusChem 2020; 13: 6246
- 58 Zilate B, Fischer C, Sparr C. Chem. Commun. 2020; 56: 1767
- 59 Blanc S, Pigot T, Cugnet C, Brown R, Lacombe S. Phys. Chem. Chem. Phys. 2010; 12: 11280
- 60 Wang Y, Haze O, Dinnocenzo JP, Farid S, Farid RS, Gould IR. J. Org. Chem. 2007; 72: 6970
- 61 Ohkubo K, Fukuzumi S.-i. J. Synth. Org. Chem., Jpn. 2012; 70: 343
- 62 Timpe H.-J, Kronfeld K.-P. J. Photochem. Photobiol., A 1989; 46: 253
- 63 Hayon E, Ibata T, Lichtin NN, Simic M. J. Phys. Chem. 1972; 76: 2072
- 64 Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
- 65 Kollmann J, Zhang Y, Schilling W, Zhang T, Riemer D, Das S. Green Chem. 2019; 21: 1916
- 66 Lamola AA, Hammond GS. J. Chem. Phys. 1965; 43: 2129
- 67 Akaba R, Sakuragi H, Tokumaru K. J. Chem. Soc., Perkin Trans. 2 1991; 291
- 68 Pragst F, Ziebig R, Seydewitz U, Driesel G. Electrochim. Acta 1980; 25: 341
- 69 Zimmermann T, Fischer GW, Reinhardt M. Z. Chem. 1986; 26: 400
- 70 Miranda MA, Izquierdo MA, Pérez-Ruiz R. J. Phys. Chem. A 2003; 107: 2478
- 71 Rodríguez-Prieto F, Corbelle CC, Fernández B, Pedro JA, Ríos Rodríguez MC, Mosquera M. Phys. Chem. Chem. Phys. 2018; 20: 307
- 72 Bockman TM, Kochi JK. J. Phys. Org. Chem. 1997; 10: 542
- 73 Yoon UC, Quillen SL, Mariano PS, Swanson R, Stavinoha JL, Bay E. J. Am. Chem. Soc. 1983; 105: 1204
- 74 Fukuzumi S, Fujita M, Noura S, Ohkubo K, Suenobu T, Araki Y, Ito O. J. Phys. Chem. A 2001; 105: 1857
- 75 Neckers DC, Valdes-Aguilera OM. Adv. Photochem. 1993; 18: 315
- 76 Shen T, Zhao Z.-G, Yu Q, Xu H.-J. J. Photochem. Photobiol., A 1989; 47: 203
- 77 Kasche V, Lindqvist L. Photochem. Photobiol. 1965; 4: 923
- 78 Wintgens V, Scaiano JC, Linden SM, Neckers DC. J. Org. Chem. 1989; 54: 5242
- 79 Schilling W, Zhang Y, Riemer D, Das S. Chem. Eur. J. 2020; 26: 390
- 80 Korobov VE, Shubin VV, Chibisov AK. Chem. Phys. Lett. 1977; 45: 498
- 81 Schilling W, Riemer D, Zhang Y, Hatami N, Das S. ACS Catal. 2018; 8: 5425
- 82 Zhang Y, Riemer D, Schilling W, Kollmann J, Das S. ACS Catal 2018; 8: 6659
- 83 MacKenzie IA, Wang L, Onuska NP. R, Williams OF, Begam K, Moran AM, Dunietz BD, Nicewicz DA. Nature 2020; 580: 76
- 84 Graml A, Ghosh I, König B. J. Org. Chem. 2017; 82: 3552
- 85a Mills A, Le Hunte S. J. Photochem. Photobiol., A 1997; 108: 1
- 85b Cay Y, Tang Y, Fan L, Lefebvre Q, Hou H, Rueping M. J. ACS Catal. 2018; 8: 9471
- 86 Cheng L, Xiang Q, Liao Y, Zhang H. Energy Environ. Sci. 2018; 11: 1362
- 87 Ding F, Yang D, Tong Z, Nan Y, Wang Y, Zou X, Jiang Z. Environ. Sci.: Nano 2017; 4: 1455
- 88 Mori T, Takamoto M, Tate Y, Shinkuma J, Wada T, Inoue Y. Tetrahedron Lett. 2001; 42: 2505
- 89 Zhang Y, Hatami N, Lange NS, Ronge E, Schilling W, Jooss C, Das S. Green Chem. 2020; 22: 4516
- 90 Hayashi Y. Chem. Sci. 2016; 7: 866
- 91 Zeitler K, Neumann M. Phys. Sci. Rev. 2019; 5: 20170173
- 92 Riemer D, Schilling W, Goetz A, Zhang Y, Gehrke S, Tkach I, Hollóczki O, Das S. ACS Catal. 2018; 8: 11679
- 93 Nagib DA, Scott ME, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
- 94 Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
- 95 Cauwenbergh R, Das S. Green Chem. 2021; 23: 2553
- 96 Ma J, Lin J, Zhao L, Harms K, Marsch M, Xie X, Meggers E. Angew. Chem. Int. Ed. 2018; 57: 11193
- 97 Hu J, Chen D, Mo Z, Li N, Xu Q, Li H, He J, Xu H, Lu J. Angew. Chem. Int. Ed. 2019; 58: 2073
- 98 Xia B, Zhang Y, Ran J, Jaroniec M, Qiao S.-Z. ACS Cent. Sci. 2021; 7: 39
- 99 Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Chem. Rev. 2020; 120: 12175
- 100 Li Z, Huang D, Zhou C, Xue W, Lei L, Deng R, Yang Y, Chen S, Wang W, Wang Z. Chem. Eng. J. 2020; 382: 122657
- 101 Silvi M, Melchiorre P. Nature 2018; 554: 41