Synlett 2020; 31(16): 1619-1622
DOI: 10.1055/s-0040-1706408
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Unsymmetric Triarylmethanes Bearing CF3-Substituted All-Carbon Quaternary Stereocenters: 1,6-Arylation of δ-Trifluo­romethyl Substituted para-Quinone Methides

Yingang Ma
a   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. of China   Email: mashutao@sdu.edu.cn   Email: leiliu@sdu.edu.cn
,
Jingxiang Pang
c   Shandong Medicinal Biotechnology Center, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Key Lab for Biotech-Drugs of National Health Commission, Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, P. R. of China
,
Xiaoguang Pan
a   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. of China   Email: mashutao@sdu.edu.cn   Email: leiliu@sdu.edu.cn
,
Shutao Ma
a   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. of China   Email: mashutao@sdu.edu.cn   Email: leiliu@sdu.edu.cn
,
Xigong Liu
b   School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. of China
,
Lei Liu
a   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. of China   Email: mashutao@sdu.edu.cn   Email: leiliu@sdu.edu.cn
b   School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (Grant No. 21722204
and 21971148).
Further Information

Publication History

Received: 30 May 2020

Accepted after revision: 07 July 2020

Publication Date:
05 August 2020 (online)


These authors contributed equally to this work.

Abstract

Pre-synthesized δ-CF3-δ-aryl-disubstituted para-quinone methides bearing δ-substituents were identified as isolable and storable substrates for 1,6-arylation reactions. A broad range of electron-rich arenes and heteroarenes participated in the arylation process, furnishing a wide array of unsymmetrical CF3-substituted triarylmethanes in high efficiency. The mild and expeditious protocol exhibited broad scopes of both arene and para-quinone methide components.

Supporting Information

 
  • References and Notes

    • 2a Nair V, Thomas S, Mathew SC, Abhilash KG. Tetrahedron 2006; 62: 6731
    • 2b Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Chem. Rev. 2010; 110: 2250
    • 2c Mondal S, Panda G. RSC Adv. 2014; 4: 28317
    • 2d Nambo M, Crudden CM. ACS Catal. 2015; 5: 4734
    • 2e Mondal S, Roy D, Panda G. ChemCatChem 2018; 10: 1941
    • 3a Nambo M, Yar M, Smith JD, Crudden CM. Org. Lett. 2015; 17: 50
    • 3b Zhang S, Kim BS, Wu C, Mao J, Walsh PJ. Nat. Commun. 2017; 8: 14641
    • 3c Zhao W, Wang Z, Chu B, Sun J. Angew. Chem. Int. Ed. 2015; 54: 1910
    • 3d Wang Z, Ai F, Wang Z, Zhao W, Zhu G, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 383
    • 3e Lin JS, Li TT, Liu JR, Jiao GY, Gu QS, Cheng JT, Guo YL, Hong X, Liu XY. J. Am. Chem. Soc. 2019; 141: 1074
    • 3f Tsuchida K, Senda Y, Nakajima K, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 9728
    • 4a Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. Gouverneur V, Müller K. Imperial College Press; London: 2012
    • 4b Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. Wiley; Chichester: 2009
    • 4c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 4d Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 5a Segawa Y, Sinananwanich W, Ueda M. Macromolecules 2008; 41: 8309
    • 5b O’Connor MJ, Boblak KN, Spitzer AD, Gucciardo PA, Baumann AM, Peter JW, Chen CY, Peter R, Mitton AA, Klumpp DA. Tetrahedron Lett. 2010; 51: 4984
    • 5c Pandey VK, Anbarasan P. J. Org. Chem. 2017; 82: 12328
  • 6 Ling Y, An D, Zhou Y, Rao W. Org. Lett. 2019; 21: 3396
    • 7a Turner AB. Q. Rev. Chem. Soc. 1964; 18: 347
    • 7b Peter MG. Angew. Chem., Int. Ed. Engl. 1989; 28: 555
    • 7c Itoh T. Prog. Polym. Sci. 2001; 26: 1019
    • 7d Parra A, Tortosa M. ChemCatChem 2015; 7: 1524
    • 7e Li W, Xu X, Zhang P, Li P. Chem. Asian J. 2018; 13: 2350
    • 8a Angle SR, Turnbull KD. J. Am. Chem. Soc. 1989; 111: 1136
    • 8b Angle SR, Arnaiz DO. J. Org. Chem. 1990; 55: 3708
    • 8c Baik W, Lee HJ, Jang JM. Koo S, Kim BH. J. Org. Chem. 2000; 65: 108
    • 8d Reddy V, Anand RV. Org. Lett. 2015; 17: 3390
    • 8e Ramanjaneyulu BT, Mahesh S, Anand RV. Org. Lett. 2015; 17: 3952
    • 8f Shen Y, Qi J, Mao Z, Cui S. Org. Lett. 2016; 18: 2722
    • 8g Huang XY, Ding R, Mo ZY. Y, Xu L, Tang HT, Wang HS, Chen YY, Pan YM. Org. Lett. 2018; 20: 4819
    • 8h Wu QY, Ao GZ, Liu F. Org. Chem. Front. 2018; 5: 2061
    • 8i Ke M, Song Q. Adv. Synth. Catal. 2017; 359: 384
    • 9a Chu WD, Zhang LF, Bao X, Zhao XH, Zeng C, Du JY, Zhang GB, Wang FX, Ma XY, Fan CA. Angew. Chem. Int. Ed. 2013; 52: 9229
    • 9b Caruana L, Kniep F, Johansen TK, Poulsen PH, Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
    • 9c Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
    • 9d Dong N, Zhang ZP, Xue XS, Li X, Cheng JP. Angew. Chem. Int. Ed. 2016; 55: 1460
    • 9e Li X, Xu X, Wei W, Lin A, Yao H. Org. Lett. 2016; 18: 428
    • 9f Ge L, Lu X, Cheng C, Chen J, Cao W, Wu X, Zhao G. J. Org. Chem. 2016; 81: 9315
    • 9g Ma C, Huang Y, Zhao Y. ACS Catal. 2016; 6: 64082
    • 9h He FS, Jin JH, Yang ZT, Yu X, Fossey JS, Deng WP. ACS Catal. 2016; 6: 652
    • 9i Jarava-Barrera C, Parra A, López A, Cruz-Acosta F, Collado-Sanz D, Cárdenas DJ, Tortosa M. ACS Catal. 2016; 6: 442
    • 9j Li S, Liu Y, Huang B, Zhou T, Tao H, Xiao Y, Liu L, Zhang J. ACS Catal. 2017; 7: 2805
    • 9k Huang GB, Huang WH, Guo J, Xu DL, Qu XC, Zhai PH, Zheng XH, Weng J, Lu G. Adv. Synth. Catal. 2019; 361: 1241
    • 10a Wang Z, Wong YF, Sun J. Angew. Chem. Int. Ed. 2015; 54: 13711
    • 10b Chen M, Sun J. Angew. Chem. Int. Ed. 2017; 56: 11966
    • 10c Wang Z, Zhu Y, Pan X, Wang G, Liu L. Angew. Chem. Int. Ed. 2020; 59: 3053
    • 11a Murray JJ. J. Org. Chem. 1968; 33: 3306
    • 11b Hyatt JA. J. Org. Chem. 1983; 48: 129
    • 11c Winter M, Schütz R, Eitzinger A, Ofial AR, Waser M. Eur. J. Org. Chem. 2020; 3812
    • 12a Pan X, Wang Z, Kan L, Mao Y, Zhu Y, Liu L. Chem. Sci. 2020; 11: 2414
    • 12b Mao Y, Wang Z, Wang G, Zhao R, Kan L, Pan X, Liu L. ACS Catal. 2020; 10: 7785
  • 13 2,6-Dimethyl-4-[2,2,2-trifluoro-1-(4-hydroxyphenyl)-1-phenylethyl]phenol (3a) – Typical Procedure To a solution of 1a (0.1 mmol, 1.0 equiv) in CH2Cl2 (3.0 mL) was successively added Bi(OTf)3 (0.01 mmol, 0.1 equiv) and 2a (0.12 mmol, 1.2 equiv) at room temperature. The mixture was stirred at the same temperature and monitored by TLC until the complete conversion of 1a. Then the reaction was concentrated and purified by a flash column chromatography on silica gel using EtOAc/PE (10:90) as eluent to afford 3a (35.7 mg, 96%). 1H NMR (500 MHz, CDCl3): δ = 7.35–7.29 (m, 3 H), 7.20–7.13 (m, 2 H), 7.01 (d, J = 8.8 Hz, 2 H), 6.77 (d, J = 8.9 Hz, 2 H), 6.73 (s, 2 H), 4.85 (s, 1 H), 4.66 (s, 1 H), 2.18 (s, 6 H). 13C NMR (126 MHz, CDCl3): δ = 154.9, 151.7, 140.9, 133.1, 132.1, 131.6, 130.4, 130.1, 128.4 (q, J = 286.0 Hz), 128.2, 127.7, 122.6, 115.0, 64.2 (q, J = 23.8 Hz), 16.4. 19F NMR (471 MHz, CDCl3): δ = –58.6. HRMS (ESI): m/z calcd for C22H18F3O2 [M – H]: 371.1264; found: 371.1260.