RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2021; 32(03): 291-294
DOI: 10.1055/s-0040-1706544
DOI: 10.1055/s-0040-1706544
letter
Diiodine–Triethylsilane System: Reduction of N-Sulfonyl Aldimines to N-Alkylsulfonamides
This work was supported by the Sichuan University of Science and Engineering (2017RCL45, 2017RCL30) and the opening Project of the Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education (LYJ1902).
Abstract
Because molecular iodine and hydrosilanes are stable to both air and moisture, reactions using these reagents are easy to operate and require mild reaction conditions. Molecular iodine and a hydrosilane were used to reduce N-sulfonyl aldimines to the corresponding N-alkylsulfonamides. This transformation is a practical method for the synthesis of N-alkylsulfonamides.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706544.
- Supporting Information
Publikationsverlauf
Eingereicht: 25. August 2020
Angenommen nach Revision: 24. September 2020
Artikel online veröffentlicht:
19. Oktober 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 French AN, Bissmire S, Wirth T. Chem. Soc. Rev. 2004; 33: 354
- 2 Aggarwal T, Kumar S, Verma AK. Org. Biomol. Chem. 2016; 14: 7639
- 3 Nguyen TB. Asian J. Org. Chem. 2017; 6: 477
- 4 Liu D, Lei A. Chem. Asian J. 2015; 10: 806
- 5 Liu K, Song C, Lei A. Org. Biomol. Chem. 2018; 16: 2375
- 6 Parvatkar PT, Manetsch R, Banik BK. Chem. Asian J. 2019; 14: 6
- 7 Pesti J, Larson GL. Org. Process Res. Dev. 2016; 20: 1164
- 8 Lecea B, Aizpurua JM, Palomo C. Tetrahedron 1985; 41: 4657
- 9 Yadav JS, Subba Reddy BV, Shiva Shankar K, Swamy T. Tetrahedron Lett. 2010; 51: 46
- 10 Adinolfi M, Iadonisi A, Pastore A, Valerio S. Pure Appl. Chem. 2012; 84: 1
- 11 Jiang J, Xiao L. ChemistrySelect 2020; 5: 4247
- 12 Li B, Sortais J.-B, Darcel C. RSC Adv. 2016; 6: 57603
- 13a Mewald M, Oestreich M. Chem. Eur. J. 2012; 18: 14079
- 13b Hog DT, Oestreich M. Eur. J. Org. Chem. 2009; 2009: 5047
- 14 Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Curr. Med. Chem. 2003; 10: 925
- 15a Gopalsamy A, Shi M, Stauffer B, Bahat R, Billiard J, Ponce-de-Leon H, Seestaller-Wehr L, Fukayama S, Mangine A, Moran R, Krishnamurthy G, Bodine P. J. Med. Chem. 2008; 51: 7670
- 15b Ballatore C, Soper JH, Piscitelli F, James M, Huang L, Atasoylu O, Huryn DM, Trojanowski JQ, Lee VM.-Y, Brunden KR, Smith AB. J. Med. Chem. 2011; 54: 6969
- 15c Malwal SR, Sriram D, Yogeeswari P, Konkimalla VB, Chakrapani H. J. Med. Chem. 2012; 55: 553
- 15d Papadopoulou MV, Bloomer WD, Rosenzweig HS, Chatelain E, Kaiser M, Wilkinson SR, McKenzie C, Ioset J.-R. J. Med. Chem. 2012; 55: 5554
- 15e Yang P, Wang L, Feng R, Almehizia AA, Tong Q, Myint K.-Z, Ouyang Q, Alqarni MH, Wang L, Xie X.-Q. J. Med. Chem. 2013; 56: 2045
- 16a Chatterjee I, Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 1965
- 16b Xiao X, Wang H, Huang Z, Yang J, Bian X, Qin Y. Org. Lett. 2006; 8: 139
- 18 Kaboudin B, Moradi K. Synthesis 2006; 2339
- 19 Lambert JB, Schulz WJ. Jr. J. Am. Chem. Soc. 1983; 105: 1671
-
20
N-Benzyl-4-methylbenzenesulfonamide (2a); Typical ProcedureA flask was successively charged with HSiEt3 (232.6 mg, 2.0 mmol, 2.0 equiv), N-sulfonyl aldimine 1a (259.3 mg, 1.0 mmol, 1.0 equiv), DCM (2.0 mL), and I2 (126.9 mg, 0.5 mmol, 0.5 equiv), and the mixture was stirred at rt for 30 min. DCM (20.0 mL) and 0.5 M aq Na2S2O3 (10 mL) were added to the flask, and the organic layer was separated, washed with brine, dried (Na2SO4), filtered, concentrated, and purified by flash column chromatography [silica gel (200–300 mesh), PE–EtOAc (4:1)] to give a white solid; yield: 178.2 mg (68%); mp 117–118 °C.1H NMR (600 MHz, CDCl3): δ = 7.75 (d, J = 8.4 Hz, 2 H), 7.30 (d, J = 8.4 Hz, 2 H), 7.28–7.23 (m, 3 H), 7.22–7.16 (m, 2 H), 4.93–4.80 (m, 1 H), 4.11 (d, J = 6.6 Hz, 2 H), 2.44 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 143.6, 136.9, 136.4, 129.9, 128.8, 128.0, 127.3, 47.4, 21.7.