Subscribe to RSS
DOI: 10.1055/s-0040-1706681
Visible-Light-Driven Phosphonoalkylation of Alkenes
We thank the National Natural Science Foundation of China (No. 21772129 and 21861038), the Fundamental Research Funds for the Central Universities, Scientific Research Program of the Higher Education Institution of Xinjiang (No. XJEDU2018Y015), and the Collaborative Fund of Luzhou Government and Southwest Medical University (2019LZXNYDJ28) for financial support.
Abstract
Phosphonylation of alkenes is important for the generation of valuable organophosphines. However, redox-neutral difunctionalization of alkenes with readily available H-P(O) compounds remains underdeveloped. Herein, we report the first visible-light-driven redox-neutral phosphonoalkylation of alkenes. A variety of organophosphorus-containing three-membered carbocyclic scaffolds are synthesized from alkene-bearing alkyl sulfonates with H-P(O) compounds. The transition-metal-free protocol displays good functional group tolerance, broad substrate scope, high yields, and mild reaction conditions.
Key words
visible light - redox-neutral - difunctionalization of alkene - cyclopropane - organophosphineSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706681.
- Supporting Information
Publication History
Received: 30 October 2020
Accepted after revision: 23 December 2020
Article published online:
12 February 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Chou H.-H, Cheng C.-H. Adv. Mater. 2010; 22: 2468
- 1b Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
- 1c Queffélec C, Petit M, Janvier P, Knight DA, Bujoli B. Chem. Rev. 2012; 112: 3777
- 1d Duffy MP, Delaunay W, Bouit P.-A, Hissler M. Chem. Soc. Rev. 2016; 45: 5296
- 1e Wang Z, Asok N, Gaffen J, Gottlieb Y, Bi W, Gendy C, Dobrovetsky R, Baumgartner T. Chem 2018; 4: 2628
- 1f Finkbeiner P, Hehn JP, Gnamm C. J. Med. Chem. 2020; 63: 7081
- 2a Portnoy NA, Morrow CJ, Chattha MS, Williams JC, Aguiar AM. Tetrahedron Lett. 1971; 1397
- 2b Cavalla D, Guéguen C, Nelson A, O’Brien P, Russell MG, Warren S. Tetrahedron Lett. 1996; 37: 7465
- 2c Antoshin AE, Reikhov YN, Tugushov KV, Rybal’chenko IV, Taranchenko VF, Lermontov SA, Malkova AN. Russ. J. Gen. Chem. 2009; 79: 2113
- 3a Parsons AF, Sharpe DJ, Taylor P. Synlett 2005; 2981
- 3b Wei W, Ji J.-X. Angew. Chem. Int. Ed. 2011; 50: 9097
- 3c Guo J.-J, Hu A, Chen Y, Sun J, Tang H, Zuo Z. Angew. Chem. Int. Ed. 2016; 55: 15319
- 3d Quint V, Morlet-Savary F, Lohier J.-F, Lalevée J, Gaumont A.-C, Lakhdar S. J. Am. Chem. Soc. 2016; 138: 7436
- 3e Gao Y, Tang G, Zhao Y. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 589
- 3f Wang H, Li Y, Tang Z, Wang S, Zhang H, Cong H, Lei A. ACS Catal. 2018; 8: 10599
- 3g Zhang G, Fu L, Chen P, Zou J, Liu G. Org. Lett. 2019; 21: 5015
- 3h Yang W, Li B, Zhang M, Wang S, Ji Y, Dong S, Feng J, Yuan S. Chin. Chem. Lett. 2020; 31: 1313
- 3i Dong X, Wang R, Jin W, Liu C. Org. Lett. 2020; 22: 3062
- 3j Xiong Y, Zhang Y, Qi L, Jiang M, Zhang J, Wang T. Asian J. Org. Chem. 2020; 9: 292
- 4a Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
- 4b Fu Q, Yi D, Zhang Z, Liang W, Chen S, Yang L, Zhang Q, Ji J, Wei W. Org. Chem. Front. 2017; 4: 1385
- 4c Wu X, Wu S, Zhu C. Tetrahedron Lett. 2018; 59: 1328
- 4d Liu X.-C, Sun K, Chen X.-L, Wang W.-F, Liu Y, Li Q.-L, Peng Y.-Y, Qu L.-B, Yu B. Adv. Synth. Catal. 2019; 361: 3712
- 4e Wang C, Huang X, Liu X, Gao S, Zhao B, Yang S. Chin. Chem. Lett. 2020; 31: 677
- 4f Liu Q, Lu W, Xie G, Wang X. Beilstein J. Org. Chem. 2020; 16: 1974
- 5a Zhang P.-Z, Zhang L, Li J.-A, Shoberu A, Zou J.-P, Zhang W. Org. Lett. 2017; 19: 5537
- 5b Yang B, Hou S.-M, Ding S.-Y, Zhao X.-N, Gao Y, Wang X, Yang S.-D. Adv. Synth. Catal. 2018; 360: 4470
- 5c Wang Y, Wang W, Tang R, Liu Z, Tao W, Fang Z. Org. Biomol. Chem. 2018; 16: 7782
- 5d Ryzhakov D, Jarret M, Baltaze J.-P, Guillot R, Kouklovsky C, Vincent G. Org. Lett. 2019; 21: 4986
- 6 Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. J. Am. Chem. Soc. 2013; 135: 14082
- 7a Handbook of Synthetic Photochemistry . Albini A, Fagnoni M. Wiley-VCH; Weinheim: 2009
- 7b Visible Light Photocatalysis in Organic Chemistry . Stephenson C, Yoon T, MacMillan DW. C. Wiley-VCH; Weinheim: 2018
- 7c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 7d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 7e Meggers E. Chem. Commun. 2015; 51: 3290
- 7f Fabry DC, Rueping M. Acc. Chem. Res. 2016; 49: 1969
- 7g Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
- 7h Goddard J.-P, Ollivier C, Fensterbank L. Acc. Chem. Res. 2016; 49: 1924
- 7i Hopkinson MN, Tlahuext-Aca A, Glorius F. Acc. Chem. Res. 2016; 49: 2261
- 7j Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 7k Liu Q, Wu L.-Z. Nat. Sci. Rev. 2017; 4: 359
- 7l Xie J, Jin H, Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193
- 7m Li J.-S, Wu J. ChemPhotoChem 2018; 2: 839
- 7n Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 7o Buzzetti L, Crisenza GE. M, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
- 7p Chen J.-Y, Li Y, Mei L, Wu H.-Y. Chin. J. Org. Chem. 2019; 39: 3040
- 7q Chen Y, Lu L.-Q, Yu D.-G, Zhu C.-J, Xiao W.-J. Sci. China Chem. 2019; 62: 24
- 7r Jiang H, Studer A. CCS Chem. 2019; 1: 38
- 7s Kong Y.-l, Xu W, Ye F.-X, Weng J.-Q. Chin. J. Org. Chem. 2019; 39: 3065
- 7t Gui Y.-Y, Sun L, Lu Z.-P, Yu D.-G. Org. Chem. Front. 2016; 3: 522
- 7u Gui Y.-Y, Zhou W.-J, Ye J.-H, Yu D.-G. ChemSusChem 2017; 10: 1337
- 7v Zhang Z, Gong L, Zhou X.-Y, Yan S.-S, Li J, Yu D.-G. Acta Chim. Sin. 2019; 77: 783
- 7w Zhou W.-J, Cao G.-M, Zhang Z.-P, Yu D.-G. Chem. Lett. 2019; 48: 181
- 7x Zhang Z, Ye J.-H, Ju T, Liao L.-L, Huang H, Gui Y.-Y, Zhou W.-J, Yu D.-G. ACS Catal. 2020; 10: 10871
- 7y Zhou W.-J, Jiang Y.-X, Chen L, Liu K.-X, Yu D.-G. Chin. J. Org. Chem. 2020; 40: 3697
- 7z Zhou W.-J, Wu X.-D, Miao M, Wang Z.-H, Chen L, Shan S.-Y, Cao G.-M, Yu D.-G. Chem. Eur. J. 2020; 26: 15052
- 8a Cai B.-G, Xuan J, Xiao W.-J. Sci. Bull. 2019; 64: 337
- 8b Liao L.-L, Gui Y.-Y, Zhang X.-B, Shen G, Liu H.-D, Zhou W.-J, Li J, Yu D.-G. Org. Lett. 2017; 19: 3735
- 8c Liu X.-C, Sun K, Lv Q.-Y, Chen X.-L, Sun Y.-Q, Peng Y.-Y, Qu L.-B, Yu B. New J. Chem. 2019; 43: 12221
- 8d Rawat D, Kumar R, Subbarayappa A. Green Chem. 2020; 22: 6170
- 8e Liu X.-C, Chen X.-L, Liu Y, Sun K, Peng Y.-Y, Qu L.-B, Yu B. ChemSusChem 2020; 13: 298
- 9 Fu Q, Bo Z.-Y, Ye J.-H, Ju T, Huang H, Liao L.-L, Yu D.-G. Nat. Commun. 2019; 10: 3592
- 10a Johansson T, Kers A, Stawinski J. Tetrahedron Lett. 2001; 42: 2217
- 10b Das S, Das U, Selvakumar P, Sharma RK, Balzarini J, De Clercq E, Molnár J, Serly J, Baráth Z, Schatte G, Bandy B, Gorecki DK. J, Dimmock JR. ChemMedChem 2009; 4: 1831
- 10c Dang Q, Kasibthatla SR, Jiang T, Taplin F, Gibson T, Potter SC, van Poelje PD, Erion MD. Med. Chem. Commun. 2011; 2: 287
- 10d Chen L, Liu X.-Y, Zou Y.-X. Adv. Synth. Catal. 2020; 362: 1724
- 11a Guo T, Zhang L, Liu X, Fang Y, Jin X, Yang Y, Li Y, Chen B, Ouyang M. Adv. Synth. Catal. 2018; 360: 4459
- 11b Milligan JA, Phelan JP, Polites VC, Kelly CB, Molander GA. Org. Lett. 2018; 20: 6840
- 11c Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
- 11d Shu C, Mega RS, Andreassen BJ, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 15430
- 11e Shu C, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2019; 58: 3870
- 11f Milligan JA, Burns KL, Le AV, Polites VC, Wang Z.-J, Molander GA, Kelly CB. Adv. Synth. Catal. 2020; 362: 242
- 12a Chen DY. K, Pouwer RH, Richard J.-A. Chem. Soc. Rev. 2012; 41: 4631
- 12b Talele TT. J. Med. Chem. 2016; 59: 8712
- 13a Wang C.-H, Li Y.-H, Yang S.-D. Org. Lett. 2018; 20: 2382
- 13b Li C, Qi Z.-C, Yang Q, Qiang X.-Y, Yang S.-D. Chin. J. Chem. 2018; 36: 1052
- 13c Li Y, Zhu Y, Yang S.-D. Org. Chem. Front. 2018; 5: 822
- 13d Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
- 13e Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
- 13f Ren W, Yang Q, Yang S.-D. Pure Appl. Chem. 2019; 91: 87
- 14 Synthesis of 3aa: An oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with 1a (0.2 mmol) and 4CzIPN (0.004 mmol, 3.2 mg, 2 mol%). Subsequently, the Schlenk tube was introduced in a glovebox, where it was charged with Cs2CO3 (0.3 mmol, 97.5 mg, 1.5 equiv) and HP(O)Ph2 (2a). The tube was taken out of the glovebox and connected to a vacuum line where it was evacuated and back-filled with N2 three times. DMF (2 mL) was then added under N2 flow and the reaction mixture was sealed in the tube and placed at a distance of 2–4 cm from a 30 W blue LED and stirred at room temperature (25 °C) for 1.5 h. The reaction was then quenched with H2O (1 mL), and the mixture was extracted with EtOAc and concentrated in vacuo. The residue was purified by silica gel flash chromatography (0.05% AcOH in petroleum ether/EtOAc = 1:1) to give the corresponding desired product 3aa (89.7 mg, 92%). 1H NMR (400 MHz, CDCl3): δ = 7.63–7.50 (m, 4 H), 7.46–7.39 (m, 4 H), 7.35 (m, 3 H), 7.28 (m, 4 H), 7.24–7.15 (m, 4 H), 2.74 (d, J = 10.2 Hz, 2 H), 1.16–1.05 (m, 2 H), 0.95 (q, J = 2.2 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 143.06 (d, J = 2.3 Hz), 141.05, 139.04, 133.55 (d, J = 97.3 Hz), 131.04 (d, J = 2.8 Hz), 130.53 (d, J = 9.2 Hz), 129.78, 128.63, 128.23 (d, J = 11.5 Hz), 126.98, 126.93, 126.62, 40.43 (d, J = 71.1 Hz), 20.51 (d, J = 4.6 Hz), 13.33 (d, J = 7.2 Hz). 31P NMR (162 MHz, CDCl3): δ = 28.78. HRMS: m/z [M + Na]+ calcd for C28H25OP: 431.1535; found: 431.1532.
For a leading review, see:
For selected examples, see: