Synlett 2020; 31(14): 1349-1360 DOI: 10.1055/s-0040-1707106
© Georg Thieme Verlag Stuttgart · New York
Activation of C–F, Si–F, and S–F Bonds by N-Heterocyclic Carbenes and Their Isoelectronic Analogues
Ewa Pietrasiak
a
Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea
,
Eunsung Lee∗
a
Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea
b
Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, South Korea Email:
eslee@postech.ac.kr
› Author Affiliations This work was supported by Korea Research Fellowship Program through the National Research Foundation of Korea (NRF, Grant No. NRF-2018R1A4A1024713) funded by the Ministry of Science and ICT (Grant No. 2019H1D3A1A01102719).
Abstract
Reactions involving C–F, Si–F, and S–F bond cleavage with N-heterocyclic carbenes and isoelectronic species are reviewed. Most examples involve activation of aromatic C–F bond via an SN Ar pathway and nucleophilic substitution of fluorine in electron-deficient olefins. The mechanism of the C–F bond activation depends on the reaction partners and the reaction can proceed via addition–elimination, oxidative addition (concerted or stepwise) or metathesis. The adducts formed upon substitution find applications in organic synthesis, as ligands and as stable radical precursors, but in most cases, their full potential remains unexplored.
1 Introduction
1.1 The C–F Bond
1.2 C–F Bond Activation: A Short Summary
1.3 C–F Bond Activation: A Special Case of SN Ar
1.4 N-Heterocyclic Carbenes (NHCs)
1.5 The Purpose of this Article
2 C–F bond Activation in Acyl Fluorides
3 Activation of Vinylic C–F Bonds
4 Activation of Aromatic C–F Bonds
5 X–F Bond Activation (X = S or Si)
6 C–F Bond Activation by Main Group Compounds Isoelectronic with NHCs
7 Conclusions and Outlook
Key words
NHC -
fluorine -
carbon–fluorine -
nucleophilic substitution -
main group elements
References
1
O’Hagan D.
Chem. Soc. Rev. 2008; 37: 308
2
Amii H,
Uneyama K.
Chem. Rev. 2009; 109: 2119
3
Fowler R,
Buford WIII,
Hamilton JJ,
Sweet R,
Weber C,
Kasper J,
Litant I.
Ind. Eng. Chem. 1947; 39: 292
4
Ahrens T,
Kohlmann J,
Ahrens M,
Braun T.
Chem. Rev. 2015; 115: 931
5
Fujita T,
Fuchibe K,
Ichikawa J.
Angew. Chem. Int. Ed. 2019; 58: 390
6
Lim S,
Song D,
Jeon S,
Kim Y,
Kim H,
Lee S,
Cho H,
Lee BC,
Kim SE,
Kim K,
Lee E.
Org. Lett. 2018; 20: 7249
7
Chen W,
Bakewell C,
Crimmin M.
Synthesis 2016; 49: 810
8
Bayne JM,
Stephan DW.
Chem. Eur. J. 2019; 25: 9350
9
Lennox AJ. J.
Angew. Chem. Int. Ed. 2018; 57: 14686
10
Kwan EE,
Zeng Y,
Besser HA,
Jacobsen EN.
Nat. Chem. 2018; 10: 917
11
Rohrbach S,
Smith AJ,
Pang JH,
Poole DL,
Tuttle T,
Chiba S,
Murphy JA.
Angew. Chem. Int. Ed. 2019; 58: 16368
12
Bourissou D,
Guerret O,
Gabbaï FP,
Bertrand G.
Chem. Rev. 2000; 100: 39
13
Breslow R.
J. Am. Chem. Soc. 1958; 80: 3719
14
Wanzlick H.-W,
Schönherr H.-J.
Angew. Chem., Int. Ed. Engl. 1968; 7: 141
15
Oefele K.
J. Organomet. Chem. 1968; 12: 42
16
Arduengo AJ,
Harlow RL,
Kline M.
J. Am. Chem. Soc. 1991; 113: 361
17
Munz D.
Organometallics 2018; 37: 275
18
Dröge T,
Glorius F.
Angew. Chem. Int. Ed. 2010; 49: 6940
19
Nelson DJ,
Nolan SP.
Chem. Soc. Rev. 2013; 42: 6723
20
Moss RA,
Fedorynski M,
Shieh W.-C.
J. Am. Chem. Soc. 1979; 101: 4736
21
Lavallo V,
Canac Y,
Präsang C,
Donnadieu B,
Bertrand G.
Angew. Chem. Int. Ed. 2005; 44: 5705
22
Lavallo V,
Canac Y,
Donnadieu B,
Schoeller WW,
Bertrand G.
Angew. Chem. Int. Ed. 2006; 45: 3488
23
Rao B,
Tang H,
Zeng X,
Liu L,
Melaimi M,
Bertrand G.
Angew. Chem. Int. Ed. 2015; 54: 14915
24
Gildner MB,
Hudnall TW.
Chem. Commun. 2019; 55: 12300
25
Sultane PR,
Ahumada G,
Janssen-Müller D,
Bielawski CW.
Angew. Chem. Int. Ed. 2019; 58: 16320
26
Hudnall TW,
Bielawski CW.
J. Am. Chem. Soc. 2009; 131: 16039
27
Hudnall TW,
Moorhead EJ,
Gusev DG,
Bielawski CW.
J. Org. Chem. 2010; 75: 2763
28
Hudnall TW,
Moerdyk JP,
Bielawski CW.
Chem. Commun. 2010; 46: 4288
29
Song H,
Kim H,
Lee E.
Angew. Chem. Int. Ed. 2018; 57: 8603
30
Guisado-Barrios G,
Bouffard J,
Donnadieu B,
Bertrand G.
Angew. Chem. Int. Ed. 2010; 49: 4759
31
Sau SC,
Hota PK,
Mandal SK,
Soleilhavoup M,
Bertrand G.
Chem. Soc. Rev. 2020; 49: 1233
32
Díez-González S,
Marion N,
Nolan SP.
Chem. Rev. 2009; 109: 3612
33
Jazzar R,
Soleilhavoup M,
Bertrand G.
Chem. Rev. 2020;
34
Danopoulos AA,
Simler T,
Braunstein P.
Chem. Rev. 2019; 119: 3730
35
Nolan SP.
N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis. Wiley-VCH; Weinheim: 2014
36
Enders D,
Niemeier O,
Henseler A.
Chem. Rev. 2007; 107: 5606
37
Chu T,
Nikonov GI.
Chem. Rev. 2018; 118: 3608
38
Song H,
Kim Y,
Park J,
Kim K,
Lee E.
Synlett 2015; 27: 477
39
Kim Y,
Lee E.
Chem. Eur. J. 2018; 24: 19110
40
Kuhn N,
Fahl J,
Boese R,
Henkel G.
Z. Naturforsch., B, Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 1998; 53: 881
41
Brooke GM.
J. Fluorine Chem. 1997; 86: 1
42
Ryan SJ,
Candish L,
Lupton DW.
J. Am. Chem. Soc. 2009; 131: 14176
43
Ryan SJ,
Candish L,
Lupton DW.
J. Am. Chem. Soc. 2011; 133: 4694
44
Ryan SJ,
Stasch A,
Paddon-Row MN,
Lupton DW.
J. Org. Chem. 2012; 77: 1113
45
Candish L,
Lupton DW.
J. Am. Chem. Soc. 2013; 135: 58
46
Candish L,
Forsyth CM,
Lupton DW.
Angew. Chem. Int. Ed. 2013; 52: 9149
47
Ryan SJ,
Schimler SD,
Bland DC,
Sanford MS.
Org. Lett. 2015; 17: 1866
48
Arduengo AJ,
Calabrese JC,
Rasika Dias HV,
Davidson F,
Goerlich JR,
Jockisch A,
Kline M,
Marshall WJ,
Runyon JW.
Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 527
49
Leclerc MC,
Gabidullin BM,
Da Gama JG,
Daifuku SL,
Iannuzzi TE,
Neidig ML,
Baker RT.
Organometallics 2017; 36: 849
50
Leclerc MC,
Gorelsky SI. B,
Gabidullin M,
Korobkov I,
Baker RT.
Chem. Eur. J. 2016; 22: 8063
51
Leclerc MC,
Da Gama JG,
Gabidullin BM,
Baker RT.
J. Fluorine Chem. 2017; 203: 81
52
Ung G,
Bertrand G.
Chem. Eur. J. 2011; 17: 8269
53
Mallah E,
Kuhn N,
Maichle-Mößmer C,
Steimann M,
Ströbele M,
Zeller K.-P.
Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 2009; 64: 1176
54
Kronig S,
Theuergarten E,
Holschumacher D,
Bannenberg T,
Daniliuc CG,
Jones PG,
Tamm M.
Inorg. Chem. 2011; 50: 7344
55
Andrews R,
Stephan DW.
Chem. Eur. J. 2020;
56
Kuhn N,
Weyers G,
Bläser D,
Boese R.
Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 2001; 56: 1235
57
Emerson-King J,
Hauser SA,
Chaplin AB.
Org. Biomol. Chem. 2017; 15: 787
58
Pait M,
Kundu G,
Tothadi S,
Karak S,
Jain S,
Vanka K,
Sen SS.
Angew. Chem. Int. Ed. 2019; 131: 2830
59
Kundu G,
De S,
Tothadi S,
Das A,
Koley D,
Sen SS.
Chem. Eur. J. 2019; 25: 16533
60
Kim Y,
Lee E.
Chem. Commun. 2016; 52: 10922
61
Styra S,
Melaimi M,
Moore CE,
Rheingold AL,
Augenstein T,
Breher F,
Bertrand G.
Chem. Eur. J. 2015; 21: 8441
62
Turner ZR.
Chem. Eur. J. 2016; 22: 11461
63
Paul US. D,
Radius U.
Chem. Eur. J. 2017; 23: 3993
64
Huber SM,
Heinemann FW,
Audebert P,
Weiss R.
Chem. Eur. J. 2011; 17: 13078
65
Tretyakov EV,
Fedyushin PA,
Panteleeva EV,
Stass DV,
Bagryanskaya IY,
Beregovaya IV,
Bogomyakov AS.
J. Org. Chem. 2017; 82: 4179
66
César V,
Labat S,
Miqueu K,
Sotiropoulos J.-M,
Brousses R,
Lugan N,
Lavigne G.
Chem. Eur. J. 2013; 19: 17113
67
Suzuki Y,
Toyota T,
Imada F,
Sato M,
Miyashita A.
Chem. Commun. 2003; 3: 1314
68
Ibrahim Al-Rafia SM,
Malcolm AC,
Liew SK,
Ferguson MJ,
McDonald R,
Rivard E.
Chem. Commun. 2011; 47: 6987
69
Mandal D,
Chandra S,
Neuman NI,
Mahata A,
Sarkar A,
Kundu A,
Anga S,
Rawat H,
Schulzke C,
Mote KR,
Sarkar B,
Chandrasekhar V,
Jana A.
Chem. Eur. J. 2020;
70
Darwent B. deB.
National Standard Reference Data Series 1970
71
Kuhn N,
Bohnen H,
Fahl J,
Bläser D,
Boese R.
Chem. Ber. 1996; 129: 1579
72
Tomar P,
Braun T,
Kemnitz E.
Chem. Commun. 2018; 54: 9753
73
Sladojevich F,
Arlow SI,
Tang P,
Ritter T.
J. Am. Chem. Soc. 2013; 135: 2470
74
Tang P,
Wang W,
Ritter T.
J. Am. Chem. Soc. 2011; 133: 11482
75
Sinhababu S,
Kundu S,
Paesch AN,
Herbst-Irmer R,
Stalke D,
Fernández I,
Frenking G,
Stückl AC,
Schwederski B,
Kaim W,
Roesky HW.
Chem. Eur. J. 2018; 24: 1264
76
Junold K,
Nutz M,
Baus JA,
Burschka C,
Fonseca Guerra C,
Bickelhaupt FM,
Tacke R.
Chem. Eur. J. 2014; 20: 9319
77
Jana A,
Samuel PP,
Tavcar G,
Roesky HW,
Schulzke C.
J. Am. Chem. Soc. 2010; 132: 10164
78
Azhakar R,
Roesky HW,
Wolf H,
Stalke D.
Chem. Commun. 2013; 49: 1841
79
Swamy VS. V. S. N,
Parvin N,
Vipin Raj K,
Vanka K,
Sen SS.
Chem. Commun. 2017; 53: 9850
80
Samuel PP,
Singh AP,
Sarish SP,
Matussek J,
Objartel I,
Roesky HW,
Stalke D.
Inorg. Chem. 2013; 52: 1544
81
Jana A,
Roesky HW,
Schulzke C,
Samuel PP.
Organometallics 2010; 29: 4837
82
Jana A,
Sarish SP,
Roesky HW,
Leusser D,
Objartel I,
Stalke D.
Chem. Commun. 2011; 47: 5434
83
Mondal T,
De S,
Koley D.
Inorg. Chem. 2017; 56: 10633
84
Crimmin MR,
Butler MJ,
White AJ. P.
Chem. Commun. 2015; 51: 15994
85
Chu T,
Boyko Y,
Korobkov I,
Nikonov GI.
Organometallics 2015; 34: 5363
86
Pitsch CE,
Wang X.
Chem. Commun. 2017; 53: 8196
87
Bakewell C,
White AJ. P,
Crimmin MR.
Angew. Chem. Int. Ed. 2018; 57: 6638