Subscribe to RSS
DOI: 10.1055/s-0040-1707113
Sulfur-Mediated Decarboxylative Coupling of 2-Nitrobenzyl Alcohols and Arylacetic Acids
The Vietnam National University Ho Chi Minh City (VNU-HCM) is acknowledged for financial support via project No. NCM2019-20-01.Publication History
Received: 14 February 2020
Accepted after revision: 16 April 2020
Publication Date:
05 May 2020 (online)
In memory of Assoc. Prof. Dr. Quan Thanh Pham
Abstract
We report a new method for the synthesis of substituted quinazolines by the condensation of 2-nitrobenzyl alcohols with arylacetic acids. The transformation requires the use of urea as a nitrogen source, elemental sulfur as a promoter, DABCO as a base, and DMSO as a solvent. Functionalities such as chloro, fluoro, trifluoromethyl, thienyl, and indolyl groups were all compatible with the reaction conditions. Because our method uses stable simple substrates to obtain the N,N-heterocycles in the absence of transition metals, it offers a potential pathway for preparing complex structures under mild conditions.
Key words
quinazolines - nitrobenzyl alcohols - arylacetic acids - cyclocondensation - decarboxylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707113.
- Supporting Information
-
References and Notes
- 1a Wu Y, Yi H, Lei A. ACS Catal. 2018; 8: 1192
- 1b Sikari R, Sinha S, Chakraborty G, Das S, van Leest NP, Paul ND. Adv. Synth. Catal. 2019; 361: 4342
- 1c Wendlandt AE, Stahl SS. J. Am. Chem. Soc. 2014; 136: 506
- 1d Zhang J, Chen S, Chen F, Xu W, Deng G.-J, Gong H. Adv. Synth. Catal. 2017; 359: 2358
- 1e Malakar CC, Baskakova A, Conrad J, Beifuss U. Chem. Eur. J. 2012; 18: 8882
- 1f Han B, Yang X.-L, Wang C, Bai Y.-W, Pan T.-C, Chen X, Yu W. J. Org. Chem. 2012; 77: 1136
- 1g Wang X, Jiao N. Org. Lett. 2016; 18: 2150
- 1h Chen J, Chang D, Xiao F, Deng G.-J. Green Chem. 2018; 20: 5459
- 1i Arachchige PT. K, Yi CS. Org. Lett. 2019; 21: 3337
- 2a Maheswari CU, Kumar GS, Venkateshwar M, Kumar RA, Kantam ML, Reddy KR. Adv. Synth. Catal. 2010; 352: 341
- 2b Das K, Mondal A, Pal D, Srimani D. Org. Lett. 2019; 21: 3223
- 2c Chen Z, Chen J, Liu M, Ding J, Gao W, Huang X, Wu H. J. Org. Chem. 2013; 78: 11342
- 2d Yao S, Zhou K, Wang J, Cao H, Yu L, Wu J, Qiu P, Xu Q. Green Chem. 2017; 19: 2945
- 3a Gui J, Pan C.-M, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
- 3b Shevlin M, Guan X, Driver TG. ACS Catal. 2017; 7: 5518
- 3c Nykaza TV, Cooper JC, Li G, Mahieu N, Ramirez A, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 15200
- 3d Rauser M, Eckert R, Gerbershagen M, Niggemann M. Angew. Chem. Int. Ed. 2019; 58: 6713
- 3e Cheung CW, Hu X. Nat. Commun. 2016; 7: 12494
- 4a Sato R, Takizawa S, Oae S. Phosphorus Sulfur Relat. Elem. 1979; 7: 229
- 4b Kas’yan OA, Tarabara IN, Zlenko ET, Kas’yan LI. Russ. J. Org. Chem. 2002; 38: 165
- 4c McLaughlin MA, Barnes DM. Tetrahedron Lett. 2006; 47: 9095
- 4d Nguyen TB, Ermolenko L, Retailleau P, Al-Mourabit A. Angew. Chem. Int. Ed. 2014; 53: 13808
- 4e Guntreddi T, Vanjari R, Singh KN. Org. Lett. 2015; 17: 976
- 4f Do NT, Tran KM, Phan HT, To TA, Nguyen TT, Phan NT. S. Org. Biomol. Chem. 2019; 17: 8987
- 4g Xing Q, Ma Y, Xie H, Xiao F, Zhang F, Deng G.-J. J. Org. Chem. 2019; 84: 1238
- 5a Deng S, Chen H, Ma X, Zhou Y, Yang K, Lan Y, Song Q. Chem. Sci. 2019; 10: 6828
- 5b Liu J, Yan X, Liu N, Zhang Y, Zhao S, Wang X, Zhuo K, Yue Y. Org. Chem. Front. 2018; 5: 1034
- 5c Vanjari R, Guntreddi T, Kumar S, Singh KN. Chem. Commun. 2015; 51: 366
- 5d Nguyen TB, Nguyen LA, Retailleau P. Org. Lett. 2019; 21: 6570
- 5e Huang H, Wang Q, Xu Z, Deng G.-J. Adv. Synth. Catal. 2019; 361: 591
- 5f Pham PH, Nguyen KX, Pham HT. B, Nguyen TT, Phan NT. S. Org. Lett. 2019; 21: 8795
- 5g Nguyen TB, Retailleau P. Org. Lett. 2019; 21: 279
- 6a Zhu JS, Haddadin MJ, Kurth MJ. Acc. Chem. Res. 2019; 52: 2256
- 6b Zhu JS, Kraemer N, Shatskikh ME, Li CJ, Son J.-H, Haddadin MJ, Tantillo DJ, Kurth MJ. Org. Lett. 2018; 20: 4736
- 6c Yang T, Lu H, Qiu R, Hong L, Yin S.-F, Kambe N. Chem. Asian J. 2019; 14: 1436
- 7a Yan Y, Wang Z. Chem. Commun. 2011; 47: 9513
- 7b Kumar M, Richa Richa, Sharma S, Bhatt V, Kumar N. Adv. Synth. Catal. 2015; 357: 2862
- 8a Chen J, Meng H, Zhang F, Xiao F, Deng G.-J. Green Chem. 2019; 21: 5201
- 8b Jiang J, Huang H, Deng G.-J. Green Chem. 2019; 21: 986
- 9 Nguyen TB, Retailleau P. Adv. Synth. Catal. 2018; 360: 2389 ; See also ref. 5d
- 10a Nguyen TB, Ermolenko L, Al-Mourabit A. J. Am. Chem. Soc. 2013; 135: 118
- 10b To TA, Nguyen CT, Tran MH. P, Huynh TQ, Nguyen TT, Le NT. H, Nguyen AD, Tran PD, Phan NT. S. J. Catal. 2019; 377: 163
- 11 6,7-Dimethoxy-2-phenylquinazoline (3da); Typical Procedure A 4-mL screw-cap vial was charged with 4,5-dimethoxy-2-nitrobenzyl alcohol (21 mg, 0.1 mmol), phenylacetic acid (2a; 34 mg, 0.25 mmol), DABCO (28 mg, 0.25 mmol), elemental sulfur (8 mg, 0.25 mmol, 32 g/mol), urea (18 mg, 0.3 mmol), and DMSO (0.3 mL). The tube was tightly capped and the mixture was stirred at 140 °C for 2 h until the reaction was complete. The mixture was then cooled to r.t. and diluted with EtOAc (5 mL) and 10% aq NaHCO3 (5 mL). The mixture was extracted with 10% aq NaHCO3 (2 × 3 mL), and the organic layers were combined, dried (Na2SO4), filtered, and concentrated under vacuum. The crude product was purified by column chromatography [silica gel, hexanes–EtOAc (10:1)] to give a light-yellow solid; yield: 17.8 mg (67%); mp 125–126 °C; Rf = 0.45 (hexanes–EtOAc, 5:1). 1H NMR (500 MHz, CDCl3): δ = 9.16 (s, 1 H), 8.48 (d, J = 7.1 Hz, 2 H), 7.46–7.41 (m, 3 H), 7.33 (s, 1 H), 7.05 (s, 1 H), 4.02 (s, 3 H), 3.97 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 159.8, 157.0, 156.4, 150.5, 148.6, 138.2, 130.2, 128.6, 128.2, 119.4, 106.8, 104.0, 56.5, 56.3. HRMS (ESI+): m/z [M + H]+ calcd for C16H15N2O2: 267.1128; found: 267.1131.
- 12 Tanaka K, Yamamoto Y, Kuyuza A, Komiyama M. Nucleosides, Nucleotides Nucleic Acids 2008; 27: 1175
For selected examples, see:
For selected examples of elemental sulfur-promoted synthesis of heterocycles other than 2-arylbenzothiazoles, see:
For a review, see:
For selected examples, see:
For selected examples, see:
For selected examples of ammonium salts as nitrogen sources for the synthesis of heterocycles, see: