Subscribe to RSS
DOI: 10.1055/s-0040-1707127
Evolution of a Cycloaddition–Rearrangement Approach to the Squalestatins: A Quarter-Century Odyssey
For studentship funding we thank the Engineering and Physical Sciences Research Council (EPSRC), the University of Oxford, the Higher Education Commission, Pakistan, the Sultanate of Oman, and the Higher Committee for Education Development in Iraq.Publication History
Received: 03 April 2020
Accepted after revision: 02 May 2020
Publication Date:
04 June 2020 (online)
Abstract
The highs, lows, and diversions of a journey leading to two syntheses of 6,7-dideoxysqualestatin H5 is described. Both syntheses relied on highly diastereoselective n-alkylations of a tartrate acetonide enolate and subsequent oxidation–hydrolysis to provide an asymmetric entry to β-hydroxy-α-ketoester motifs. The latter were differentially elaborated to diazoketones which underwent stereo- and regioselective Rh(II)-catalysed cyclic carbonyl ylide formation–cycloaddition and then acid-catalysed transketalisation to generate the 2,8-dioxabicyclo[3.2.1]octane core of the squalestatins/zaragozic acids at the correct tricarboxylate oxidation level. The unsaturated side chain was either protected with a bromide substituent during the transketalisation or introduced afterwards by a stereoretentive Ni-catalyzed Csp3–Csp2 cross-electrophile coupling.
1 Introduction
2 Racemic Model Studies to the Squalestatin/Zaragozic Acid Core
3 Asymmetric Model Studies to a Keto α-Diazoester
3.1 Dialkyl Squarate Desymmetrisation
3.2 Tartrate Alkylation
3.2.1 Further Studies on Seebach’s Alkylation Chemistry
4 Failure at the Penultimate Step to DDSQ
5 Second-Generation Approach to DDSQ: A Bromide Substituent Strategy
5.1 Stereoselective Routes to E-Alkenyl Halides via β-Oxido Phosphonium Ylides
5.2 Back to DDSQ Synthesis
6 An Alternative Strategy to DDSQ: By Cross-Electrophile Coupling
7 Alkene Ozonolysis in the Presence of Diazo Functionality: Accessing α-Ketoester Intermediates
8 Summary
-
References and Notes
-
1 Permanent address: University of Kufa, Najaf Governorate, Iraq.
- 2 Hodgson DM, Bray CD, Humphreys PG. Synlett 2006; 1
- 3 Hoffmann R. Angew. Chem., Int. Ed. Engl. 1988; 27: 1593
- 4 Padwa A. Acc. Chem. Res. 1991; 24: 22
- 5 Sidebottom PJ, Highcock RM, Lane SJ, Procopiou PA, Watson NS. J. Antibiot. 1992; 45: 648
- 6 Wilson KE, Burk RM, Biftu T, Ball RG, Hoogsteen K. J. Org. Chem. 1992; 57: 7151
- 7 Blows WM, Foster G, Lane SJ, Noble D, Piercey JE, Sidebottom PJ, Webb G. J. Antibiot. 1994; 47: 740
- 8a Nadin A, Nicolaou KC. Angew. Chem., Int. Ed. Engl. 1996; 35: 1622
- 8b Armstrong A, Blench TJ. Tetrahedron 2002; 58: 9321
- 9 Hodgson DM, Bailey JM, Harrison T. Tetrahedron Lett. 1996; 37: 4623
- 10 Nicolaou KC, Yue EW, La Greca S, Nadin A, Yang Z, Leresche JE, Tsuri T, Naniwa Y, De Riccardis F. Chem. Eur. J. 1995; 1: 467
- 11 Armstrong A, Barsanti PA. Synlett 1995; 903
- 12 Hodgson DM, Bailey JM, Villalonga-Barber C, Drew MG. B, Harrison T. J. Chem. Soc., Perkin Trans. 1 2000; 3432
- 13 Kataoka O, Kitagaki S, Watanabe N, Kobayashi J, Nakamura S, Shiro M, Hashimoto S. Tetrahedron Lett. 1998; 39: 2371
- 14 Hodgson DM, Villalonga-Barber C. Tetrahedron Lett. 2000; 41: 5597
- 15 Hodgson DM, Villalonga-Barber C, Goodman JM, Pellegrinet SC. Org. Biomol. Chem. 2010; 8: 3975
- 16 Evans DA, Barrow JC, Leighton JL, Robichaud AJ, Sefkow M. J. Am. Chem. Soc. 1994; 116: 12111
- 17 Ohno M. Top. Heterocycl. Chem. 2006; 6: 1
- 18 Sintim HO, Valade A, Harling DC, Hodgson DM. Tetrahedron 2019; 75: 130747
- 19 Naef R, Seebach D. Angew. Chem., Int. Ed. Engl. 1981; 20: 1030
- 20 Seebach D, Aebi JD, Gander-Coquoz M, Naef R. Helv. Chim. Acta 1987; 70: 1194
- 21 Sintim HO, Al Mamari HH, Almohseni HA. A, Fegheh-Hassanpour Y, Hodgson DM. Beilstein J. Org. Chem. 2019; 15: 1194
- 22 Vedejs E, Larsen S. Org. Synth., Coll. Vol. VII . John Wiley & Sons; London: 1990: 277
- 23 Morita H, Arisaka M, Yoshida N, Kobayashi J. Tetrahedron 2000; 56: 2929
- 24 Sintim HO. Dissertation . University of Oxford; UK: 2002
- 25 Soai K, Oyamada H. Synthesis 1984; 605
- 26 Almohseni HA. A, Mamari HH. A, Valade A, Sintim HO, Hodgson DM. Chem. Commun. 2018; 54: 5354
- 27 Boeckman RK, Ko SS. J. Am. Chem. Soc. 1980; 102: 7146
- 28 Smith AB, Beauchamp TJ, LaMarche MJ, Kaufman MD, Qiu Y, Arimoto H, Jones DR, Kobayashi K. J. Am. Chem. Soc. 2000; 122: 8654
- 29 Al-Mamari HH. Dissertation . University of Oxford; UK: 2005
- 30 Barma DK, Kundu A, Zhang H, Mioskowski C, Falck JR. J. Am. Chem. Soc. 2003; 125: 3218
- 31 Schlosser M, Christmann FK, Piskala A, Coffinet D. Synthesis 1971; 29
- 32 Arif T. Dissertation . University of Oxford; UK: 2012
- 33 Hodgson DM, Arif T. J. Am. Chem. Soc. 2008; 130: 16500
- 34 Hodgson DM, Arif T. Chem. Commun. 2011; 47: 2685
- 35 Hodgson DM, Arif T. Org. Lett. 2010; 12: 4204
- 36 Trost BM, Probst GD, Schoop A. J. Am. Chem. Soc. 1998; 120: 9228
- 37 Müller T, Göhl M, Lusebrink I, Dettner K, Seifert K. Eur. J. Org. Chem. 2012; 2323
- 38 Fürstner A, Seidel G. Tetrahedron 1995; 51: 11165
- 39 Naito S, Escobar M, Kym PR, Liras S, Martin SF. J. Org. Chem. 2002; 67: 4200
- 40 Gassman PG, Schenk WN. J. Org. Chem. 1977; 42: 918
- 41 Fegheh-Hassanpour Y, Arif T, Sintim HO, Al Mamari HH, Hodgson DM. Org. Lett. 2017; 19: 3540
- 42 Hon Y.-S, Lin S.-W, Lu L, Chen Y.-J. Tetrahedron 1995; 51: 5019
- 43 Fegheh-Hassanpour Y, Ebrahim F, Arif T, Sintim HO, Claridge TD. W, Amin NT, Hodgson DM. Org. Biomol. Chem. 2018; 16: 3876
- 44 Johnson KA, Biswas S, Weix DJ. Chem. Eur. J. 2016; 22: 7399
- 45 Villalonga-Barber C. Dissertation . University of Oxford; UK: 2001
- 46 Almohseni AA. H, Fegheh-Hassanpour Y, Arif T, Hodgson DM. Synthesis 2019; 51: 4231
- 47a Wang F, Liu X, Zhang Y, Lin L, Feng X. Chem. Commun. 2009; 7297
- 47b Yamashita Y, Yasukawa T, Yoo W.-J, Kitanosono T, Kobayashi S. Chem. Soc. Rev. 2018; 47: 4388
- 48 Gilbert Stork, quoted in: Seeman JI. Angew. Chem. Int. Ed. 2012; 51: 3012
-
49
Hodgson DM,
Stupple PA,
Johnstone C.
Tetrahedron Lett. 1997; 38: 6471
- 50 Hodgson DM, Labande AH, Muthusamy S. Org. React. 2013; 80: 133