Subscribe to RSS
DOI: 10.1055/s-0040-1707129
Kinetic Study of Disulfonimide-Catalyzed Cyanosilylation of Aldehydes by Using a Method of Progress Rates
This work was supported by Shanghai Pujiang Program (18PJ1402200), the National Natural Science Foundation of China (21702059), and the Fundamental Research Funds for the Central Universities (222201814014). We gratefully thank the Max Planck Society, the European Research Council (Advanced Grant ‘High Performance Lewis Acid Organocatalysis, HIPOCAT’ to B.L.), and the Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology (JKVJ12001010).
Abstract
Kinetic study of organic reactions, especially multistep catalytic reactions, is crucial to in-depth understanding of reaction mechanisms. Here we report our kinetic study on the chiral disulfonimide-catalyzed cyanosilylation of an aldehyde, which revealed that two molecules of TMSCN are involved in the rate-determining C–C bond-forming step. In addition, the apparent activation energy, enthalpy of activation, and entropy of activation were deduced through a study of the temperature dependence of the reaction rates. More importantly, a novel and efficient method that makes use of the progress rates was developed to treat kinetic data obtained by continuous monitoring of the progress of a reaction by in situ FTIR.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707129.
- Supporting Information
Publication History
Received: 08 April 2020
Accepted: 28 April 2020
Article published online:
20 May 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Vogel P, Houk KN. In Organic Chemistry: Theory, Reactivity, and Mechanisms in Modern Synthesis. Wiley-VCH; Weinheim: 2019
- 2a Nishii Y, Ikeda M, Hayashi Y, Kawauchi S, Miura M. J. Am. Chem. Soc. 2020; 142: 1621
- 2b Romine AM, Yang KS, Karunananda MK, Chen JS, Engle KM. ACS Catal. 2019; 9: 7626
- 2c Masson-Makdissi J, Jang YJ, Prieto L, Taylor MS, Lautens M. ACS Catal. 2019; 9: 11808
- 2d Shevick SL, Obradors C, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 12056
- 2e Lee CF, Diaz DB, Holownia A, Kaldas SJ, Liew SK, Garrett GE, Dudding T, Yudin AK. Nat. Chem. 2018; 10: 1062
- 2f Chung R, Vo A, Fokin VV, Hein JE. ACS Catal. 2018; 8: 7889
- 2g Wendlandt AE, Vangal P, Jacobsen EN. Nature 2018; 556: 447
- 2h Schreyer L, Kaib PS. J, Wakchaure VN, Obradors C, Properzi R, Lee S, List B. Science 2018; 362: 216
- 3a Effenberger F. Angew. Chem. Int. Ed. 1994; 33: 1555
- 3b Effenberger F, Förster S, Wajant H. Curr. Opin. Biotechnol. 2000; 11: 532
- 3c Gröger H. Adv. Synth. Catal. 2001; 343: 547
- 3d García-Urdiales E, Alfonso I, Gotor V. Chem. Rev. 2005; 105: 313
- 3e Sukumaran J, Hanefeld U. Chem. Soc. Rev. 2005; 34: 530
- 3f Holt J, Hanefeld U. Curr. Org. Synth. 2009; 6: 15
- 4a Zeng X.-P, Cao Z.-Y, Wang X, Chen L, Zhou F, Zhu F, Wang C.-H, Zhou J. J. Am. Chem. Soc. 2016; 138: 416
- 4b Laurell Nash A, Hertzberg R, Wen Y.-Q, Dahlgren B, Brinck T, Moberg C. Chem. Eur. J. 2016; 22: 3821
- 4c Wei Y.-L, Huang W.-S, Cui Y.-M, Yang K.-F, Xu Z, Xu L.-W. RSC Adv. 2015; 5: 3098
- 4d Lv C, Miao C.-X, Xu D, Wang S, Xia C, Sun W. Catal. Commun. 2012; 27: 138
- 4e Uemura M, Kurono N, Sakai Y, Ohkuma T. Adv. Synth. Catal. 2012; 354: 2023
- 4f Wen YQ, Ren WM, Lu XB. Chin. Chem. Lett. 2011; 22: 1285
- 4g Lv C, Cheng Q, Xu D, Wang S, Xia C, Sun W. Eur. J. Org. Chem. 2011; 3407
- 4h Zhang Z, Wang Z, Zhang R, Ding K. Angew. Chem. Int. Ed. 2010; 49: 6746
- 4i North M, Omedes-Pujol M, Williamson C. Chem. Eur. J. 2010; 16: 11367
- 4j North M, Villuendas P, Williamson C. Tetrahedron 2010; 66: 1915
- 4k Belokon YN, Clegg W, Harrington RW, Maleev VI, North M, Pujol MO, Usanov DL, Young C. Chem. Eur. J. 2009; 15: 2148
- 4l Kurono N, Arai K, Uemura M, Ohkuma T. Angew. Chem. Int. Ed. 2008; 47: 6643
- 4m Zeng B, Zhou X, Liu X, Feng X. Tetrahedron 2007; 63: 5129
- 4n Liu Y, Liu X, Xin J, Feng X. Synlett 2006; 1085
- 4o Lundgren S, Wingstrand E, Penhoat M, Moberg C. J. Am. Chem. Soc. 2005; 127: 11592
- 4p Hatano M, Ikeno T, Miyamoto T, Ishihara K. J. Am. Chem. Soc. 2005; 127: 10776
- 4q Liu X, Qin B, Zhou X, He B, Feng X. J. Am. Chem. Soc. 2005; 127: 12224
- 4r Belokon YN, Caveda-Cepas S, Green B, Ikonnikov NS, Khrustalev VN, Larichev VS, Moscalenko MA, North M, Orizu C, Tararov VI, Tasinazzo M, Timofeeva GI, Yashkina LV. J. Am. Chem. Soc. 1999; 121: 3968
- 4s North M, Orizu C, Tararov VI, Ikonnikov NS, Belokon YN, Hibbs DE, Hursthouse MB, Abdul Malik KM. Chem. Commun. 1998; 387
- 4t Hamashima Y, Sawada D, Kanai M, Shibasaki M. J. Am. Chem. Soc. 1999; 121: 2641
- 4u Hamashima Y, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2000; 122: 7412
- 5a Matsumoto A, Asano K, Matsubara S. Org. Lett. 2019; 21: 2688
- 5b Kurimoto Y, Nasu T, Fujii Y, Asano K, Matsubara S. Org. Lett. 2019; 21: 2156
- 5c Provencher BA, Bartelson KJ, Liu Y, Foxman BM, Deng L. Angew. Chem. Int. Ed. 2011; 50: 10565
- 5d Zuend SJ, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 15872
- 5e Peng D, Zhou H, Liu X, Wang L, Chen S, Feng X. Synlett 2007; 2448
- 5f Qin B, Liu X, Shi J, Zheng K, Zhao H, Feng X. J. Org. Chem. 2007; 72: 2374
- 5g Tian SK, Deng L. Tetrahedron 2006; 62: 11320
- 5h Fuerst DE, Jacobsen EN. J. Am. Chem. Soc. 2005; 127: 8964
- 5i Ryu DH, Corey EJ. J. Am. Chem. Soc. 2005; 127: 5384
- 5j Wen Y, Huang X, Huang J, Xiong Y, Qin B, Feng X. Synlett 2005; 2445
- 5k Zhou H, Chen F.-X, Qin B, Feng X, Zhang G. Synlett 2004; 1077
- 5l Li Y, He B, Feng X, Zhang G. Synlett 2004; 1598
- 5m Ryu DH, Corey EJ. J. Am. Chem. Soc. 2004; 126: 8106
- 5n Tian S.-K, Hong R, Deng L. J. Am. Chem. Soc. 2003; 125: 9900
- 5o Tian SK, Deng L. J. Am. Chem. Soc. 2001; 123: 6195
- 5p Oku J, Ito N, Inoue S. Makromol. Chem. 1979; 180: 1089
- 6a Jin F.-Z, Zhao C.-C, Ma H.-C, Chen G.-J, Dong Y.-B. Inorg. Chem. 2019; 58: 9253
- 6b Li Z, Liu Y, Kang X, Cui Y. Inorg. Chem. 2018; 57: 9786
- 6c Li J, Ren Y, Qi C, Jiang H. Chem. Commun. 2017; 53: 8223
- 7a Zeng X.-P, Sun J.-C, Liu C, Ji C.-B, Peng Y.-Y. Adv. Synth. Catal. 2019; 361: 3281
- 7b Kurono N, Ohkuma T. ACS Catal. 2016; 6: 989
- 7c Wang W, Liu X, Lin L, Feng X. Eur. J. Org. Chem. 2010; 25: 4751
- 7d North M, Usanov DL, Young C. Chem. Rev. 2008; 108: 5146
- 7e Wingstrand E, Lundgren S, Penhoat M, Moberg C. Pure Appl. Chem. 2006; 78: 409
- 7f Brunel J.-M, Holmes IP. Angew. Chem. Int. Ed. 2004; 43: 2752
- 7g Gregory RJ. H. Chem. Rev. 1999; 99: 3649
- 8 Zhang Z, Bae HY, Guin J, Rabalakos C, van Gemmeren M, Leutzsch M, Klussmann M, List B. Nat. Commun. 2016; 7: 12478
- 9a Blackmond DG. Angew. Chem. Int. Ed. 2005; 44: 4302
- 9b Mathew JS, Klussmann M, Iwamura H, Valera F, Futran A, Emanuelsson EA. C, Blackmond DG. J. Org. Chem. 2006; 71: 4711
- 9c Zotova N, Broadbelt LJ, Armstrong A, Blackmond DG. Bioorg. Med. Chem. Lett. 2009; 19: 3934
- 9d Mower MP, Blackmond DG. ACS Catal. 2018; 8: 5977
- 9e Dechert-Schmitt A.-M, Garnsey MR, Wisniewska HM, Murray JI, Lee T, Kung DW, Sach N, Blackmond DG. ACS Catal. 2019; 9: 4508
- 9f Wei B, Sharland JC, Lin P, Wilkerson-Hill SM, Fullilove FA, McKinnon S, Blackmond DG, Davies HM. L. ACS Catal. 2020; 10: 1161
- 10a Burés J. Angew. Chem. Int. Ed. 2016; 55: 2028
- 10b Burés J. Angew. Chem. Int. Ed. 2016; 55: 16084
- 10c Nielsen CD.-T, Burés J. Chem. Sci. 2019; 10: 348
- 11a Maruyama K, Katagiri T. J. Phys. Org. Chem. 1989; 2: 205
- 11b Peltzer RM, Gauss J, Eisenstein O, Cascella M. J. Am. Chem. Soc. 2020; 142: 2984
- 12 Girard C, Kagan HB. Angew. Chem. Int. Ed. 1998; 37: 2922
- 13 Zhang Z, Klussmann M, List B. ChemRxiv 2020; preprint DOI: 10.26434/chemrxiv.12084768.v1