Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(18): 1795-1799
DOI: 10.1055/s-0040-1707248
DOI: 10.1055/s-0040-1707248
letter
Electrochemical Synthesis of Quinazolinones by the Metal-Free and Acceptor-Free Dehydrogenation of 2-Aminobenzamides
We thank the National Natural Science Foundation of China (21861006), Ministry of Education of the People’s Republic of China (IRT_16R15), Natural Science Foundation of Guangxi Province (2016GXNSFEA380001, 2016GXNSFGA380005, 2018GXNSFBA281151), Guangxi Key R&D Program (No. AB18221005), Science and Technology Major Project of Guangxi (AA17204058-21), Guangxi Science and Technology Base and Special Talents (guike AD19110027), Guangxi Funds for Distinguished Experts and State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2019-A03), and Guangxi Science and Technology Base and Talents Program (AD18281035, AD18281028) for financial support.Further Information
Publication History
Received: 02 June 2020
Accepted after revision: 26 July 2020
Publication Date:
19 August 2020 (online)
Abstract
An efficient approach has been developed for the construction of quinazolin-4(3H)-ones by the selective anodic dehydrogenative oxidation/cyclization of benzylic chlorides and 2-aminobenzamides. The method features acceptor-free and metal-free dehydrogenation of amines to imines; a subsequent intermolecular addition provides the products in moderate to good yields.
Key words
quinazolinones - electrochemical synthesis - aminobenzamides - benzylic chlorides - metal-freeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707248.
- Supporting Information
-
References and Notes
- 1a Michael JP. Nat. Prod. Rep. 2008; 25: 166
- 1b Liu R, Li H, Yang JX, An ZP. Chem. Nat. Compd. 2018; 54: 808
- 1c Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
- 2a Bouley R, Ding D, Peng Z, Bastian M, Lastochkin E, Song W, Suckow MA, Schroeder VA, Wolter WR, Mobashery S, Chang M. J. Med. Chem. 2016; 59: 5011
- 2b Jafari E, Khajouei MR, Hassanzadeh F, Hakimelahi GH, Khodarahmi GA. Res. Pharm. Sci. 2016; 11: 1
- 3a Abbas SY, El-Bayouki KA. M, Basyouni WM, Mostafa EA. Med. Chem. Res. 2018; 27: 571
- 3b Brown CE, Kong T, McNulty J, D’Aiuto L, Williamson K, McClain L, Piazza P, Nimgaonkar VL. Bioorg. Med. Chem. Lett. 2017; 27: 4601
- 4a Rakesh KP, Manukumar HM, Gowda DC. Bioorg. Med. Chem. Lett. 2015; 25: 1072
- 4b Manivannan E, Chaturvedi SC. Bioorg. Med. Chem. 2011; 19: 4520
- 5 Gawad NM. A, Georgey HH, Youssef RM, El-Sayed NA. Eur. J. Med. Chem. 2010; 45: 6058
- 6a Bakavoli M, Sabzevari O, Rahimizadeh M. Chin. Chem. Lett. 2007; 18: 1466
- 6b Hu B.-Q, Cui J, Wang L.-X, Tang Y.-L, Yang L. RSC Adv. 2016; 6: 43950
- 7 Bergman J, Brynolf A. Tetrahedron 1990; 46: 1295
- 8a Kabri Y, Gellisa A, Vanelle P. Green Chem. 2009; 11: 201
- 8b Potewar TM, Nadaf RN, Daniel T, Lahoti RJ, Srinivasan KV. Synth. Commun. 2005; 35: 231
- 9a Zhou J, Fang J. J. Org. Chem. 2011; 76: 7730
- 9b Hikawa H, Ino Y, Suzuki H, Yokoyama Y. J. Org. Chem. 2012; 77: 7046
- 10a Zhu Y.-p, Fei Z, Liu M.-c, Jia F.-c, Wu A.-x. Org. Lett. 2013; 15: 378
- 10b Mohammed S, Vishwakarma RA, Bharate SB. J. Org. Chem. 2015; 80: 6915
- 11 Zhao D, Wang T, Li J.-X. Chem. Commun. 2014; 50: 6471
- 12 Gunanathan C, Milstein D. Science 2013; 341: 1229712
- 13a Nie S.-z, Sun X, Wei W.-t, Zhang X.-j, Yan M, Xiao J.-l. Org. Lett. 2013; 15: 2394
-
13b
Kusumoto S,
Akiyama M,
Nozaki K.
J. Am. Chem. Soc. 2013; 135: 18726
- 13c Talwar D, Gonzalez-de-Castro A, Li HY, Xiao J. Angew. Chem. Int. Ed. 2015; 54: 5223
- 14a Stubbs JM, Hazlehurst RJ, Boyle PD, Blacquiere JM. Organometallics 2017; 36: 1692
- 14b Tseng K.-NT, Rizzi AM, Szymczak NK. J. Am. Chem. Soc. 2013; 135: 16352
- 15a Esteruelas MA, Lezáun V, Martínez A, Oliván M, Oñate E. Organometallics 2017; 36: 2996
- 15b Buil ML, Esteruelas MA, Gay MP, Gómez-Gallego M, Nicasio AI, Oñate E, Santiago A, Sierra MA. Organometallics 2018; 37: 603
- 16a Li Q.-Y, Cheng S.-Y, Tang H.-T, Pan Y.-M. Green Chem. 2019; 21: 5517
- 16b Huang C, Huang Y, Liu C, Yu Y, Zhang B. Angew. Chem. Int. Ed. 2019; 58: 12014
- 16c Xu F, Long H, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 9017
- 16d Huang C, Qian X.-Y, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 6650
- 16e He M.-X, Mo Z.-Y, Wang Z.-Q, Cheng S.-Y, Xie R.-R, Tang H.-T, Pan Y.-M. Org. Lett. 2020; 22: 724
- 16f Meng X.-J, Zhong P.-F, Wang Y.-M, Wang H.-S, Tang H.-T, Pan Y.-M. Adv. Synth. Catal. 2020; 362: 506
- 16g Wang Z.-Q, Hou C, Zhong Y.-F, Lu Y.-X, Mo Z.-Y, Pan Y.-M, Tang H.-T. Org. Lett. 2019; 21: 9841
- 16h Zhang Y.-Z, Mo Z.-Y, Wang H.-S, Wen X.-A, Tang H.-T, Pan Y.-M. Green Chem. 2019; 21: 3807
- 16i Mo Z.-Y, Swaroop TR, Tong W, Zhang Y.-Z, Tang H.-T, Pan Y.-M, Sun H.-B, Chen Z.-F. Green Chem. 2018; 20: 4428
- 16j Wang Z.-Q, Meng X.-J, Li Q.-Y, Tang H.-T, Wang H.-S, Pan Y.-M. Adv. Synth. Catal. 2018; 360: 4043
- 16k Li Q.-Y, Swaroop TR, Hou C, Wang Z.-Q, Pan Y.-M, Tang H.-T. Adv. Synth. Catal. 2019; 361: 1761
- 16l Mo S.-K, Teng Q.-H, Pan Y.-M, Tang H.-T. Adv. Synth. Catal. 2019; 361: 1756
-
16m
Pan Y.-M,
Tang H.-T,
Wang Z.-Q,
Li Q.-Y,
Meng X.-J.
ZL 201810161249.9, 2019
- 16n Feng EQ, Hou ZW, Xu HC. Youji Huaxue 2019; 39: 1424
- 16o Cao ZC, Liu JC, Chu YQ, Zhao FM, Zhu YH, She YB. Youji Huaxue 2019; 39: 2499
- 16p Wu YX, Xi YC, Zhao M, Wang SY. Youji Huaxue 2018; 38: 2590
- 16q Zhang HY, Tang RP, Shi XL, Xie L, Wu JW. Youji Huaxue 2019; 39: 1837
- 17a Lin D.-Z, Lai Y.-L, Huang J.-M. ChemElectroChem 2018; 16: 4118
- 17b Cao L, Huo H, Zeng H, Yu Y, Lu D, Gong Y. Adv. Synth. Catal. 2018; 360: 4764
- 18 Teng Q.-H, Sun Y, Yao Y, Tang H.-T, Li J.-R, Pan Y.-M. ChemElectroChem 2019; 6: 3120
-
19
Quinazolinones 3a–q; General Procedure
A mixture of the appropriate 2-aminobenzamide 1 (0.5 mmol), benzylic chloride 2 (0.6 mmol), and Bu4NBF4 (10 mol%) was placed in a 25 mL three-necked round-bottomed flask equipped with a condenser, an RVC (100 PPI) anode, and a Pt plate (1 × 1 cm) cathode. The flask was opened to air and MeCN (6 mL) was added. Electrolysis was carried out at 80 °C (oil-bath temperature) at a constant current of 10 mA until the substrate was completely consumed (TLC). The mixture was then cooled to rt, and the solvent was removed under reduced pressure. The residue was purified by chromatography (silica gel, EtOAc–PE).
2-Phenylquinazolin-4(3H)-one (3a)
White solid; yield: 88.8 mg (80%); mp 233–235 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 12.52 (s, 1 H), 8.22–8.12 (m, 3 H), 7.84–7.77 (m, 1 H), 7.73 (d, J = 8.0 Hz, 1 H), 7.53 (qt, J = 11.0, 5.2 Hz, 4 H). 13C NMR (101 MHz, DMSO): δ = 162.80, 152.84, 149.28, 135.09, 133.26, 131.90, 129.12, 128.30, 128.03, 127.09, 126.39, 121.51.
2-(4-Fluorophenyl)quinazolin-4(3H)-one (3b)
White solid; yield: 72.0 mg (60%); mp 240–242 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 12.57 (s, 1 H), 8.25 (dd, J = 8.8, 5.6 Hz, 2 H), 8.15 (d, J = 6.4 Hz, 1 H), 7.84 (t, J = 6.8 Hz, 1 H), 7.73 (d, J = 8.1 Hz, 1 H), 7.55–7.50 (m, 1 H), 7.39 (t, J = 8.8 Hz, 2 H). 13C NMR (100 MHz, DMSO): δ = 162.69, 151.86, 149.11, 135.15, 130.85 (d, J = 9.3 Hz), 130.10, 129.66 (d, J = 3.2 Hz), 127.92, 127.11, 126.32, 121.32, 116.11 (d, J = 22.0 Hz).
2-(4-Chlorophenyl)quinazolin-4(3H)-one (3c)
White solid; yield: 81.9 mg (64%); mp 295.5–298 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 12.61 (s, 1 H), 8.21 (d, J = 8.7 Hz, 2 H), 8.16 (d, J = 7.9 Hz, 1 H), 7.85 (t, J = 6.9 Hz, 1 H), 7.75 (d, J = 8.0 Hz, 1 H), 7.64 (d, J = 8.6 Hz, 2 H), 7.54 (t, J = 7.5 Hz, 1 H). 13C NMR (100 MHz, DMSO): δ = 163.04, 152.10, 149.31, 137.04, 135.45, 132.29, 130.37, 129.44, 128.27, 127.55, 126.62, 121.72.