Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(17): 1720-1724
DOI: 10.1055/s-0040-1707249
DOI: 10.1055/s-0040-1707249
letter
Electrochemical Synthesis of Vinyl Sulfones by Sulfonylation of Styrenes with a Catalytic Amount of Potassium Iodide
We gratefully thank the Anhui Provincial Natural Science Foundation (No. 1808085QB29) and Key Project of Provincial Natural Science Research Foundation of Anhui Universities, China (No. KJ2018A0675, KJ2018A0389) for financial support.Further Information
Publication History
Received: 21 June 2020
Accepted after revision: 19 July 2020
Publication Date:
26 August 2020 (online)
Abstract
An electrochemical sulfonylation reaction of styrenes was developed in which sodium arylsulfinates were used as sulfonylating reagents, a catalytic amount of KI was used as a redox mediator, and Bu4NBF4 was used as the electrolyte. In addition to various styrenes, sodium arylsulfinates with either electron-donating or electron-withdrawing groups were tolerated.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707249.
- Supporting Information
-
References and Notes
- 1a Reddick JJ, Cheng J, Roush WR. Org. Lett. 2003; 5: 1967
- 1b Wang G, Mahesh U, Chen GY. J, Yao SQ. Org. Lett. 2003; 5: 737
- 1c Frankel BA, Bentley M, Kruger RG, McCafferty DG. J. Am. Chem. Soc. 2004; 126: 3404
- 1d Uttamchandani M, Liu K, Panicker RC, Yao SQ. Chem. Commun. 2007; 1518
- 1e Gordon CP, Griffith R, Keller PA. Med. Chem. (Sharjah, United Arab Emirates) 2007; 3: 199
- 1f Meadows DC, Sanchez T, Neamati N, North TW, Gervay-Hague J. Bioorg. Med. Chem. 2007; 15: 1127
- 2a Ley SV, Lygo B, Wonnacott A. Tetrahedron Lett. 1985; 26: 535
- 2b Trost BM, Ghadiri MR. J. Am. Chem. Soc. 1986; 108: 1098
- 2c Back TG, Proudfoot JR, Djerassi C. Tetrahedron Lett. 1986; 27: 2187
- 2d Virgili M, Belloch J, Mayano A, Pericàs MA, Riera A. Tetrahedron Lett. 1991; 32: 4583
- 2e Chen S.-H, Horvath RF, Joglar J, Fischer MJ, Danishefsky SJ. J. Org. Chem. 1991; 56: 5834
- 2f Fotsch CH, Chamberlin AR. J. Org. Chem. 1991; 56: 4141
- 2g Ibáñez PL, Nájera C. Tetrahedron Lett. 1993; 34: 2003
- 2h Keck GE, Savin KA, Weglarz MA. J. Org. Chem. 1995; 60: 3194
- 2i Nájera C, Yus M. Tetrahedron 1999; 55: 10547
- 2j Ni L, Zheng XS, Somers PK, Hoong LK, Hill RR, Marino EM, Suen KL, Saxena U, Meng CQ. Bioorg. Med. Chem. Lett. 2003; 13: 745
- 2k Wardrop DJ, Fritz J. Org. Lett. 2006; 8: 3659
- 2l Das I, Pathak T. Org. Lett. 2006; 8: 1303
- 2m López-Pérez A, Robles-Machín R, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2007; 46: 9261
- 2n Clive DL. J, Li Z, Yu M. J. Org. Chem. 2007; 72: 5608
- 2o Noshi MN, El-awa A, Torres E, Fuchs PL. J. Am. Chem. Soc. 2007; 129: 11242
- 2p Zhu Q, Lu Y. Org. Lett. 2009; 11: 1721
- 2q Sulzer-Mossé S, Alexakis A, Mareda J, Bollot G, Bernardinelli G, Filinchuk Y. Chem. Eur. J. 2009; 15: 3204
- 2r Sun X, Yu F, Ye T, Liang X, Ye J. Chem. Eur. J. 2011; 17: 430
- 2s Nishimura T, Takiguchi Y, Hayashi T. J. Am. Chem. Soc. 2012; 134: 9086
- 3a Bian M, Xu F, Ma C. Synthesis 2007; 2951
- 3b Huang F, Batey RA. Tetrahedron 2007; 63: 7667
- 3c Liang S, Zhang R.-Y, Wang G, Chen S.-Y, Yu X.-Q. Eur. J. Org. Chem. 2013; 7050
- 3d Rokade BV, Prabhu KR. J. Org. Chem. 2014; 79: 8110
- 3e Xu Y, Tang X, Hu W, Jiang H. Green Chem. 2014; 16: 3720
- 3f Guo R, Gui Q, Wang D, Tan Z. Catal. Lett. 2014; 79: 1377
- 3g Jiang Q, Xu B, Jia J, Zhao A, Zhao Y.-R, Li Y.-Y, He N.-N, Guo C.-C. J. Org. Chem. 2014; 79: 7372
- 3h Chen J, Mao J, Zheng Y, Rong D, Liu G, Yan H, Zhang C, Shi D. Tetrahedron 2015; 71: 5059
- 3i Gao J, Lai J, Yuan G. RSC Adv. 2015; 5: 66723
- 3j Nie G, Deng X, Lei X, Hu Q, Chen Y. RSC Adv. 2016; 6: 75277
- 3k Xue N, Guo R, Tu X, Luo W, Deng W, Xiang J. Synlett 2016; 27: 2695
- 4 Taniguchi N. Synlett 2011; 1308
- 5 Gui Q, Han K, Liu Z, Su Z, He X, Jiang H, Tian B, Li Y. Org. Biomol. Chem. 2018; 16: 5748
- 6 Nair V, Augustine A, George TG, Nair LG. Tetrahedron Lett. 2001; 42: 6763
- 7 Das B, Lingaiah M, Damodar K, Bhunia N. Synthesis 2011; 2941
- 8 Zhang N, Yang D, Wei W, Yuan L, Cao Y, Wang H. RSC Adv. 2015; 5: 37013
- 9 Katrun P, Chiampanichayakul S, Korworapan K, Pohmakotr M, Reutrakul V, Jaipetch T, Kuhakarn C. Eur. J. Org. Chem. 2010; 5633
- 10a Grimshaw J. Electrochemical Reactions and Mechanisms in Organic Chemistry. Elsevier; Amsterdam: 2000
- 10b Organic Electrochemistry, 4th ed. Lund H, Hammerich O. Marcel Dekker; New York: 2001
- 10c Sperry JB, Wright DL. Chem. Soc. Rev. 2006; 35: 605
- 10d Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
- 10e Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
- 10f Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices. Fuchigami T, Inagi S, Atobe M. Wiley-VCH; Chichester: 2015
- 10g Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 10h Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
- 10i Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
- 10j Moeller KD. Chem. Rev. 2018; 118: 4817
- 10k Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
- 10l Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
- 10m Yuan Y, Lei A. Acc. Chem. Res. 2019; 52: 3309
- 10n Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
- 11 Qian P, Bi M, Su J, Zha Z, Wang Z. J. Org. Chem. 2016; 81: 4876
- 12 Luo Y.-C, Pan X.-J, Yuan G.-Q. Tetrahedron 2015; 71: 2119
- 13 Electrochemical Sulfonylation of Styrenes 3a–w; General Procedure An undivided cell equipped with a Pt anode (1.0 × 1.0 × 0.02 cm) and a graphite rod cathode was charged with the appropriate sodium arylsulfinate (2 mmol), KI (0.5 mmol), and Bu4NBF4 (1 mmol). The vessel was evacuated and backfilled with N2 (×3). The appropriate styrene (1 mmol), DMSO (3 mL), and AcOH (3 mL) were added sequentially from a syringe. Electrolysis was carried out at a constant current of 12 mA at 50 °C for 10 h. The mixture was then cooled to rt and filtered through a plug of silica, eluting with EtOAc. The filtrate was washed with H2O (×3) and extracted with EtOAc. The organic layer was washed with brine, dried (Na2SO4), and evaporated to dryness under reduced pressure. The residue was purified by column chromatography [silica gel, PE–EtOAc (5:1)].
- 14 (E)-2-Phenylvinyl 4-Tolyl Sulfone (3a) White solid; yield: 209.4 mg (81%); mp 119–120 °C. 1H NMR (600 MHz, CDCl3): δ = 7.83 (d, J = 8.3 Hz, 2 H), 7.66 (d, J = 15.4 Hz, 1 H), 7.48–7.47 (m, 2 H), 7.42–7.34 (m, 5 H), 6.85 (d, J = 15.4 Hz, 1 H), 2.43 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 144.5, 142.1, 137.8, 132.6, 131.2, 130.1, 129.2, 128.7, 127.8, 127.7, 21.8. HRMS (ESI): m/z [M + H]+ calcd for C15H15O2S: 259.0787; found: 259.0789. (E)-4-(2-Tosylvinyl)benzonitrile (3h) White solid; yield: 234.6 mg (83%); mp 125–127 °C. 1H NMR (600 MHz, CDCl3): δ = 7.83 (d, J = 8.3 Hz, 2 H), 7.69 (d, J = 8.3 Hz, 2 H), 7.65 (d, J = 15.5 Hz, 1 H), 7.58 (d, J = 8.3 Hz, 2 H), 7.37 (d, J = 8.0 Hz, 2 H), 6.96 (dd, J = 15.4, 0.8 Hz, 1 H), 2.45 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 145.1, 139.4, 136.9, 136.8, 132.9, 131.4, 130.3, 129.0, 128.1, 118.2, 114.3, 21.8. HRMS (ESI): m/z [M + H]+ calcd for C16H14NO2S: 284.0740; found: 284.0738. (E)-2-(2-Naphthyl)vinyl 4-Tolyl Sulfone (3k) Yellow solid; yield: 246.9 mg (80%); mp 160–162 °C. 1H NMR (400 MHz, CDCl3): δ = 7.91–7.79 (m, 7 H), 7.54–7.49 (m, 3 H), 7.34 (d, J = 7.9 Hz, 2 H), 6.96 (d, J = 15.4 Hz, 1 H), 2.42 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 144.5, 142.1, 137.9, 134.5, 133.2, 131.0, 130.1, 130.0, 129.0, 128.8, 127.9, 127.8, 127.7, 127.1, 123.5, 21.7. HRMS (ESI): m/z [M + H]+ calcd for C19H17O2S: 309.0944; found: 309.0948. 2-Chlorophenyl (E)-2-Phenylvinyl Sulfone (3v) White solid; yield: 247.8 mg (89%); mp 93–94 °C. 1H NMR (400 MHz, CDCl3): δ = 8.22 (d, J = 7.7 Hz, 1 H), 7.77 (d, J = 15.4 Hz, 1 H), 7.57–7.39 (m, 8 H), 7.08 (d, J = 15.4 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 145.4, 138.2, 134.6, 132.9, 132.4, 132.0, 131.5, 130.8, 129.2, 128.8, 127.6, 125.3. HRMS (ESI): m/z [M + H]+ calcd for C14H15ClNO2S: 296.0507; found: 296.0513 2-Phenylprop-2-en-1-yl 4-Tolyl Sulfone (3w) White solid; yield: 197.9 mg (73%); mp 97–98 °C. 1H NMR (400 MHz, CDCl3): δ = 7.67–7.64 (m, 2 H), 7.29–7.21 (m, 7 H), 5.59 (s, 1 H), 5.21 (s, 1 H), 4.25 (s, 2 H), 2.39 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 144.7, 139.0, 136.7, 135.5, 129.6, 128.8, 128.5, 128.0, 126.3, 121.9, 62.2, 21.7. HRMS (ESI): m/z [M + H]+ calcd for C16H16NaO2S: 295.0763; found: 295.0765.
For selected examples, see:
For selected examples, see:
For selected books and reviews on electrochemical synthesis, see: