Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(13): 1323-1327
DOI: 10.1055/s-0040-1707468
DOI: 10.1055/s-0040-1707468
letter
Synthesis of (Z)-Alkene-Containing Linear Conjugated Dienyl Homoallylic Alcohols by a Palladium-Catalyzed Three-Component Reaction
This work was financially supported by JSPS KAKENHI Grant Number JP15K05496.Further Information
Publication History
Received: 19 February 2020
Accepted after revision: 13 March 2020
Publication Date:
14 May 2020 (online)
Abstract
A synthesis of (Z)-alkene-containing linear conjugated dienyl homoallylic alcohols by using a palladium-catalyzed three-component reaction has been developed. This method shows good functional-group compatibility and generality, with high diastereoselectivity. Additionally, in many cases, the present method controls the alkene stereochemistry of the newly formed C–C bond and overcomes the inherent preference for (E)-alkene formation, giving (Z,E)- and (Z,Z)-products.
Key words
allylation - homoallylic alcohols - palladium catalysis - multicomponent reaction - vinyl stannanesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707468.
- Supporting Information
-
References and Notes
- 1a Larsen BJ, Sun Z, Nagorny P. Org. Lett. 2013; 15: 2998
- 1b Nagasawa T, Kuwahara S. Org. Lett. 2013; 15: 3002
- 2 Wang G, Huang Z, Negishi E. Org. Lett. 2008; 10: 3223
- 3a Smith AB, Ott GR. J. Am. Chem. Soc. 1996; 118: 13095
- 3b Smith AB, Ott GR. J. Am. Chem. Soc. 1998; 120: 3935
- 3c Kim Y, Singer RA, Carreira EM. Angew. Chem. Int. Ed. 1998; 37: 1261
- 3d Fukuda A, Kobayashi Y, Kimachi T, Takemoto Y. Tetrahedron 2003; 59: 9305
- 3e Yadav JS, Kumar MR, Sabitha G. Tetrahedron Lett. 2008; 49: 463
- 4 Gregg C, Gunawan C, Ng AW. Y, Wimala S, Wickremasinghe S, Rizzacasa MA. Org. Lett. 2013; 15: 516
- 5 Do H, Kang CW, Cho JH, Gilbertson SR. Org. Lett. 2015; 17: 3972
- 6a Yanagisawa A, Nakashima H, Ishiba A, Yamamoto H. Bull. Chem. Soc. Jpn. 2001; 74: 1129
- 6b Nishigaichi Y, Hanano Y, Takuwa A. Chem. Lett. 1998; 27: 33
- 6c Yanagisawa A, Nakatsuka Y, Nakashima H, Yamamoto H. Synlett 1997; 933
- 6d Nishigaichi Y, Fujimoto M, Takuwa A. Synlett 1994; 731
- 6e Nishigaichi Y, Fujimoto M, Takuwa A. J. Chem. Soc., Perkin Trans. 1 1992; 2581
- 6f Seyferth D, Pornet J. J. Org. Chem. 1980; 45: 1721
- 6g Seyferth D, Pornet J, Weinstein RM. Organometallics 1982; 1: 1651
- 6h Hosomi A, Saito M, Sakurai H. Tetrahedron Lett. 1980; 21: 3783
- 6i Kobayashi S, Nishio K. Chem. Lett. 1994; 23: 1773
- 6j Hirashita T, Inoue S, Yamamura H, Kawai M, Araki S. J. Organomet. Chem. 1997; 549: 305
- 6k Woo S, Squires N, Fallis AG. Org. Lett. 1999; 1: 573
- 6l Kwon O, Park S, Schreiber SL. J. Am. Chem. Soc. 2002; 124: 13402
- 6m Jung ME, Nichols CJ. Tetrahedron Lett. 1996; 37: 7667
- 6n Sodeoka M, Yamada H, Shimizu T, Watanuki S, Shibasaki M. J. Org. Chem. 1994; 59: 712
- 6o Okamoto S, Sato FJ. J. Organomet. Chem. 2001; 624: 151
- 6p Zellner A, Schlosser M. Synlett 2001; 1016
- 7 Hoffmann RW, Schäfer F, Haeberlin E, Rohde T, Körber K. Synthesis 2000; 2060
- 8a Koreeda M, Tanaka Y. Chem. Lett. 1982; 11: 1299
- 8b Marx A, Yamamoto H. Angew. Chem. Int. Ed. 2000; 39: 178
- 9a Ratjen L, García-García P, Lay F, Beck ME, List B. Angew. Chem. Int. Ed. 2011; 50: 754
- 9b Curti C, Battistini L, Sartori A, Lodola A, Mor M, Rassu G, Pelosi G, Zanardi F, Casiraghi G. Org. Lett. 2011; 13: 4738
- 9c Curti C, Sartori A, Battistini L, Brindani N, Rassu G, Pelosi G, Lodola A, Mor M, Casiraghi G, Zanardi F. Chem. Eur. J. 2015; 21: 6433
- 9d Fu K, Zhang J, Lin L, Li J, Liu X, Feng X. Org. Lett. 2017; 19: 332
- 10a Krasovskiy A, Lipshutz BH. Org. Lett. 2011; 13: 3818
- 10b Lu G.-P, Voigtritter KR, Cai C, Lipshutz BH. Chem. Commun. 2012; 48: 8661
- 10c Lu G.-P, Voigtritter KR, Cai C, Lipshutz BH. J. Org. Chem. 2012; 77: 3700
- 11a Denmark SE, Yang S.-M. Tetrahedron 2004; 60: 9695
- 11b Denmark SE, Yang S.-M. Org. Lett. 2001; 3: 1749
- 11c Elbert BL, Lim DS. W, Gudmundsson HG, O’Hanlon JA, Anderson EA. S. Chem. Eur. J. 2014; 20: 8594
- 12 Miura T, Nakahashi J, Zhou W, Shiratori Y, Stewart SG, Murakami M. J. Am. Chem. Soc. 2017; 139: 10903
- 13a Horino Y, Sugata M, Mutsuura I, Tomohara K, Abe H. Org. Lett. 2017; 19: 5968
- 13b Horino Y, Sugata M, Abe H. Adv. Synth. Catal. 2016; 358: 1023
- 14 anti-(3Z,5E)-7-{[tert-butyl(dimethyl)silyl]oxy}-1,2-diphenylhepta-3,5-dien-1-ol (4aaa); Typical Procedure A 10 mL, two-neck, round-bottomed flask was charged with Pd(OAc)2 (11.2 mg, 0.1 mmol), Ph3P (26.4 mg, 0.2 mmol), and THF (1 mL), and the mixture was stirred at 70 °C for 0.5 h. A solution of 1a (151.1 mg, 0.5 mmol), PhCHO (2a; 123 μL, 1.2 mmol), and vinylstannane 3a (346.1 mg, 0.75 mmol) in THF (3 mL) was then added, and the mixture was then stirred at 70 °C for 2 h until the reaction was complete. The resulting mixture was diluted with EtOAc (10 mL) and washed with sat. aq NH4Cl (2 × 10 mL), sat. aq NaHCO3 (2 × 10 mL), and brine (2 × 10 mL). The combined organic layers were dried (MgSO4) and concentrated, and the residue was purified by chromatography [silica gel, EtOAc–hexane (1:4)] to give a yellow oil; yield: 118.4 mg (60%); Rf = 0.41 (EtOAc–hexane, 1:4). 1H NMR (400 MHz, CDCl3): δ = 7.23–7.12 (m, 8 H), 7.07 (dm, J = 7.6 Hz, 2 H), 6.58 (dd, J = 11.2, 14.8 Hz, 1 H), 6.27 (t, J = 11.2 Hz, 1 H), 5.87 (t, J = 10.4 Hz, 1 H), 5.79 (td, J = 4.4, 14.8 Hz, 1 H), 4.84 (d, J = 7.6 Hz, 1 H), 4.22 (d, J = 4.4 Hz, 2 H), 4.04 (dd, J = 7.6, 10.4 Hz, 1 H), 2.22 (s, 1 H), 0.94 (s, 9 H), 0.08 (s, 3 H), 0.06 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 142.0, 141.2, 134.9, 131.4, 129.5, 128.5, 128.4, 128.0, 127.5, 126.72, 126.66, 124.4, 78.1, 63.4, 53.0, 26.1, 18.5, –5.1. HRMS (EI): m/z [M – OH]+ calcd for C25H33OSi: 377.2295; found: 377.2260.
- 15 Scott WJ, Stille JK. J. Am. Chem. Soc. 1986; 108: 3033
- 16 See the Supporting Information for details.
- 17 Del Valle L, Stille JK, Hegedus LS. J. Org. Chem. 1990; 55: 3019
- 18 Hoveyda AH, Evans DA, Fu GC. Chem. Rev. 1993; 93: 1307
For reactions involving Sn, see:
Si:
In:
Zn:
Cr:
Ti: