RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2020; 31(12): 1197-1200
DOI: 10.1055/s-0040-1707522
DOI: 10.1055/s-0040-1707522
letter
Dual In Situ Generation of Aliphatic Vinyl Ethers and Electron-Deficient ortho-Quinone Methides for Inverse-Electron-Demand [4+2] Cycloaddition: A Selective One-Pot Synthesis of 3-Alkylchromanes
Weitere Informationen
Publikationsverlauf
Received: 05. März 2020
Accepted after revision: 02. April 2020
Publikationsdatum:
06. Mai 2020 (online)

Abstract
An inverse-electron-demand [4+2] cycloaddition of in situ generated aliphatic vinyl ethers and electron-deficient ortho-quinone methides (o-QMs) has been developed. The reaction of in situ generated aliphatic vinyl ethers with o-QMs afforded the corresponding 3-alkylchromanes with high stereo- and regioselectivities. The method provides a versatile access to functionalized 3-alkylchromanes and it constitutes a useful tool for the synthesis of biologically active chromanes.
Key words
catalysis - [4+2] cycloaddition - vinyl ethers - ortho-quinone methides - salicylaldehydes - chromanesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707522.
- Supporting Information
-
References and Notes
- 1a Bai W.-J, David JG, Feng Z.-G, Weaver MG, Wu K.-L, Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
- 1b Singh MS, Nagaraju A, Anand N, Chowdhury S. RSC Adv. 2014; 4: 55924
- 1c Willis NJ, Bray CD. Chem. Eur. J. 2012; 18: 9160
- 1d Van de Water RW, Pettus TR. R. Tetrahedron 2002; 58: 5367
- 2 Jurd L. Tetrahedron 1977; 33: 163
- 3a Shen Y.-B, Li S.-S, Wang L, An X.-D, Liu Q, Liu X, Xiao J. Org. Lett. 2018; 20: 6069
- 3b Kong L, Thirupathi N, Jia J, Xu Z. Sci. China Chem. 2019; 62: 80
- 4a Hsiao C.-C, Raja S, Liao H.-H, Atodiresei I, Magnus R. Angew. Chem. Int. Ed. 2015; 54: 5762
- 4b Wong YF, Wang Z, Hong W.-X, Sun J. Tetrahedron 2016; 72: 2748
- 5a Wong CR, Hummel G, Cai Y, Schaus SE, Panek JS. Org. Lett. 2019; 21: 32
- 5b Bray CD. Org. Biomol. Chem. 2008; 6: 2815
- 6a Zhou D, Yu X, Zhang J, Wang W, Xie H. Org. Lett. 2018; 20: 174
- 6b Zhou D, Mao K, Zhang J, Yan B, Wang W, Xie H. Tetrahedron Lett. 2016; 57: 5649
- 6c Jeong HJ, Kim DY. Org. Lett. 2018; 20: 2944
- 7a Tanaka K, Kishimoto M, Asada Y, Hoshino Y, Honda K. J. Org. Chem. 2019; 84: 13858
- 7b Tanaka K, Kishimoto M, Hoshino Y, Honda K. Tetrahedron Lett. 2018; 59: 1841
- 7c Tanaka K, Hoshino Y, Honda K. Yuki Gosei Kagaku Kyokaishi 2018; 76: 1341
- 7d Tanaka K, Sukekawa M, Shigematsu Y, Hoshino Y, Honda K. Tetrahedron 2017; 73: 6456
- 7e Tanaka K, Hoshino Y, Honda K. Heterocycles 2017; 95: 474
- 7f Tanaka K, Hoshino Y, Honda K. Tetrahedron Lett. 2016; 57: 2448
- 7g Tanaka K, Shigematsu Y, Sukekawa M, Hoshino Y, Honda K. Tetrahedron Lett. 2016; 57: 5914
- 7h Tanaka K, Sukekawa M, Hoshino Y, Honda K. Chem. Lett. 2018; 47: 440
- 7i Tanaka K, Sukekawa M, Kishimoto M, Hoshino Y, Honda K. Heterocycles 2019; 99: 145
- 7j Tanaka K, Kishimoto M, Sukekawa M, Hoshino Y, Honda K. Tetrahedron Lett. 2018; 59: 3361
- 7k Tanaka K, Omata S, Asada Y, Hoshino Y, Honda K. J. Org. Chem. 2019; 84: 10669
- 7l Tanaka K, Tanaka Y, Kishimoto M, Hoshino Y, Honda K. Beilstein J. Org. Chem. 2019; 15: 2105
- 7m Tanaka K, Hoshino Y, Honda K. Shikizai Kyokaishi 2020; 93: 49
- 8 Tanaka K, Kishimoto M, Ohtsuka N, Iwama Y, Wada H, Hoshino Y, Honda K. Synlett 2019; 30: 189
- 9a Li Q.-Y, Zhang M, Hallis TM, DeRosier TM, Yue J.-M, Ye Y, Mais DE, Wang M.-W. Biochem. Biophys. Res. Commun. 2010; 391: 1531
- 9b Saleem M, Tousif MI, Riaz N, Ahmed I, Schulz B, Ashraf M, Nasar R, Pescitelli G, Hussain H, Jabbar A, Shafiq N, Krohn K. Phytochemistry 2013; 93: 199
- 10a Hu H, Chen X, Sun K, Wang J, Liu Y, Liu H, Yu B, Sun Y, Qu L, Zhao Y. Org. Chem. Front. 2018; 5: 2925
- 10b Usse S, Guillaumet G, Viaud M.-C. Tetrahedron Lett. 1997; 38: 5501
- 11 3-Substituted Chromanes 3a–m and 4a–c; General Procedure The appropriate salicylaldehyde 1 (0.50 mmol), aliphatic or aryl aldehyde 2 (1.50 mmol), and CH(OMe)3 (2.00 mmol) were dissolved in dry toluene (5.0 mL) under N2. TfOH (20 mol%) was added, and the mixture was stirred at 60 °C for 24 h. The reaction was then quenched with 5% aq NaHCO3, and the organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layer was dried (Na2SO4), filtered, and concentrated in vacuo. The residue was purified by column chromatography [silica gel, hexane–EtOAc (30:1)] to afford 3-substituted chromane 3 or 4. 2,4-Dimethoxy-3,3-dimethyl-6-nitrochromane (3a) Prepared by using 5-nitrosalicylaldehyde (83.7 mg, 0.50 mmol), isobutyraldehyde (135 μL, 1.50 mmol), CH(OMe)3 (219 μL, 2.00 mmol), and anhyd toluene (5.0 mL) to give a yellow solid; yield: 135 mg (quant); mp 97.8–98.2 °C. IR (ATR): 2928, 1588, 1520, 1481, 1253, 1091, 977, 833, 751 cm–1. 1H NMR (500 MHz, CDCl3): δ = 8.20 (d, J = 2.8 Hz, 1 H), 8.11 (dd, J = 9.1, 2.8 Hz, 1 H), 6.92 (d, J = 8.8 Hz, 1 H), 4.83 (s, 1 H), 4.04 (s, 1 H), 3.62 (s, 3 H), 3.56 (s, 3 H), 1.04 (s, 3 H), 1.00 (s, 3 H). 13C{1H} NMR (126 MHz, CDCl3): δ = 157.3, 141.4, 125.1, 124.6, 123.9, 117.0, 106.6, 80.6, 60.4, 57.2, 37.0, 20.3, 18.9. HRMS (ESI+): m/z [M + H]+ calcd for C13H18NO5: 268.1180; found: 268.1190.
For a representative in situ generation of an o-QM from 2-[hydroxy(phenyl)methyl]phenol, see:
For representative syntheses of 3-alkylchromanes, see: