Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(13): 1268-1272
DOI: 10.1055/s-0040-1707822
DOI: 10.1055/s-0040-1707822
letter
CAN-Mediated Oxidative Cyclodehydrogenation of Hexapyrrolylbenzenes
We are grateful for generous financial support from the Department of Atomic Energy, Government of India (DAE, Grant No.2018043702RP04978-BRNS), the Council of Scientific and Industrial Research (CSIR, Grant No. 02(0254)/16/EMRII) and the Indian Institute of Technology Delhi (IIT Delhi, Grant No. FIRP-MI01691). V. G. thanks CSIR for a Senior Research Fellowship.Further Information
Publication History
Received: 28 April 2020
Accepted after revision: 14 May 2020
Publication Date:
04 June 2020 (online)
Abstract
An efficient method for ceric ammonium nitrate mediated synthesis of annularly fused hexapyrrolohexaazacoronene by oxidative cyclodehydrogenation has been reported. The photophysical properties of the representative hexaazacoronene has also been described.
Key words
ceric ammonium nitrate - coronenes - azacoronene - hexapyrrolylbenzene - oxidative cyclodehydrogenation - MALDI-TOFSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707822.
- Supporting Information
-
References and Notes
- 1a Watson MD, Fechtenkoötter A, Müllen K. Chem. Rev. 2001; 101: 1267
- 1b Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M. Angew. Chem. Int. Ed. 2007; 46: 4832
- 1c Sergeyev S, Pisula W, Geerts YH. Chem. Soc. Rev. 2007; 36: 1902
- 1d Pisula W, Feng X, Müllen K. Chem. Mater. 2011; 23: 554
- 2a Adam D, Schuhmacher P, Simmerer J, Haussling L, Siemensmeyer K, Etzbachi KH, Ringsdorf H, Haarer D. Nature 1994; 371: 141
- 2b Stabel A, Herwig P, Müllen K, Rabe JP. Angew. Chem., lnt. Ed. Engl. 1995; 34: 1609
- 2c Herwig BP, Kayser CW, Müllen K, Spiess HW. Adv. Mater. 1996; 8: 510
- 2d Stein SE, Brown RL. J. Am. Chem. Soc. 1987; 109: 3721
- 2e Müller M, Iyer VS, Kübel C, Enkelmann V, Müllen K. Angew. Chem., Int. Ed. Engl. 1997; 36: 1607
- 2f Yamaguchi S, Swager TM. J. Am. Chem. Soc. 2001; 123: 12087
- 2g Watson MD, Debije MG, Warman JM, Müllen K. J. Am. Chem. Soc. 2004; 126: 766
- 2h Shen H.-C, Tang J.-M, Chang H.-K, Yang C.-W, Liu R.-S. J. Org. Chem. 2005; 70: 10113
- 3a Mende LS, Fechtenkotter A, Müllen K, Moons E, Friend RH, MacKenzie JD. Science 2001; 293: 1119
- 3b Van de Craats AM, Stutzmann N, Bunk O, Nielsen MM, Watson M, Müllen K, Chanzy HD, Sirringhaus H, Friend RH. Adv. Mater. 2003; 15: 495
- 4a Gorodetsky AA, Chiu C.-Y, Schiros T, Palma M, Cox M, Jia Z, Sattler W, Kymissis I, Steigerwald M, Nuckolls C. Angew. Chem. Int. Ed. 2010; 49: 7909
- 4b Shinamura S, Osaka I, Miyazaki E, Nakao A, Yamagishi M, Takeya J, Takimiya K. J. Am. Chem. Soc. 2011; 133: 5024
- 4c Martin CJ, Gil B, Pereraab SD, Draper SM. Chem. Commun. 2011; 47: 3616
- 5a Tokita S, Hiruta K, Kitahara K, Nishi H. Synth. Commun. 1982; 229
- 5b Tokita S, Hiruta K, Kitahara K, Nishi H. Bull. Chem. Soc. Jpn. 1982; 55: 3933
- 5c Masaoka S, Furukawa S, Chang H.-C, Mizutani T, Kitagawa S. Angew. Chem. Int. Ed. 2001; 40: 3817
- 6a Narita A, Wang X.-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
- 6b Wang X.-Y, Yao X, Narita A, Müllen K. Acc. Chem. Res. 2019; 52: 2491
- 7a Jasat A, Dolphin D. Chem. Rev. 1997; 97: 2267
- 7b Sessler JL, Seidel D. Angew. Chem. Int. Ed. 2003; 42: 5134
- 7c Nakamura Y, Aratani N, Osuka A. Chem. Soc. Rev. 2007; 36: 831
- 7d Saito S, Osuka A. Angew. Chem. Int. Ed. 2011; 50: 4342
- 8a Zhang X, Manohar SK. J. Am. Chem. Soc. 2005; 127: 14156
- 8b Duan XF, Wang JL, Pei J. Org. Lett. 2005; 7: 4071
- 8c Liu Y, Nishiura M, Wang Y, Hou Z. J. Am. Chem. Soc. 2006; 128: 5592
- 8d Li Y, Cao L, Ning Z, Huang Z, Cao Y, Tian H. Tetrahedron Lett. 2007; 48: 975
- 8e Ikeda C, Sakamoto N, Nabeshima T. Org. Lett. 2008; 10: 4601
- 8f Ikeda A, Nakasu M, Ogasawara S, Nakanishi H, Nakamura M, Kikuchi J. Org. Lett. 2009; 11: 1163
- 9a Takase M, Enkelmann V, Sebastiani D, Baumgarten M, Müllen K. Angew. Chem. Int. Ed. 2007; 46: 5524
- 9b Draper SM, Gregg DJ, Madathil R. J. Am. Chem. Soc. 2002; 124: 3486
- 9c Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Nano Lett. 2009; 9: 1752
- 9d Wei J, Han B, Guo Q, Shi X, Wang W, Wei N. Angew. Chem. Int. Ed. 2010; 49: 8209
- 9e Narita A, Wang X.-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
- 10a Cunningham RP, Farqaur D, Gibson WK, Leaver D. J. Chem. Soc. 1969; 239
- 10b Paudler WW, Stephan EA. J. Am. Chem. Soc. 1970; 92: 4468
- 10c Kumagai T, Tanaka S, Mukai T. Tetrahedron Lett. 1984; 25: 5669
- 10d Gompper R, Wagner H.-U. Angew. Chem., Int. Ed. Engl. 1988; 27: 1437
- 10e Berlin A, Martina S, Pagani G, Schiavon G, Zotti G. Heterocycles 1991; 32: 85
- 10f Berlin A, Martina S, Pagani G, Schiavon G, Zotti G. Synth. Met. 1991; 41: 363
- 10g Berlin A, Pagani G, Zotti G, Schiavon G. Makromol. Chem. 1993; 194: 1137
- 11a Larzrges M, Jouini M, Hapiot P, Guiriec P, Lacaze P.-C. J. Phys. Chem. A 2003; 107: 5042
- 11b Vargova A, Hrncarikova K, Vegh D, Lukes V, Fedorko P, Rapta P. Electrochim. Acta 2007; 52: 7885
- 12 Takase M, Narita T, Fujita W, Asano MS, Nishinaga T, Benten H, Yoza K, Müllen K. J. Am. Chem. Soc. 2013; 135: 8031
- 13 Gonka E, Chmielewski PJ, Lis T, Stępien M. J. Am. Chem. Soc. 2014; 136: 16399
- 14a Biemans HA. M, Zhang C, Smith P, Kooijman H, Smeets WJ. J, Spek AL, Meijer EW. J. Org. Chem. 1996; 61: 9012
- 14b Hrnčariková K, Szöllősy Á, Végh D. ARKIVOC 2006; (ii): 124
- 15a Gupta V, Rao VU. B, Das T, Vanka K, Singh RP. J. Org. Chem. 2016; 81: 5663
- 15b Gupta V, Pandey SK, Singh RP. Org. Biomol. Chem. 2018; 16: 7134
- 16 1,2,3,4,5,6,7,8,9,10,11,12-Dodecakis[4-(trifluoromethyl)phenyl]-2a1,2b1,4b1,6b1,8b1,10b1-hexaazahexacyclopenta[bc,ef,hi,kl,no,qr]coronene (4b) Hexapyrrolylbenzene 3b (1.0 equiv) was dissolved in dry acetonitrile (2 mL) and cerium(IV) ammonium nitrate (12.0 equiv) was added under nitrogen. The reaction immediately turned to black, and the progress of the reaction was monitored by TLC. After completion of the reaction (5 min), the reaction was quenched with water (5 mL) and extracted with EtOAc (3 × 10 mL). After drying and filtration, the combined extracts were concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using EtOAc and hexane as eluent to afford 4b as a brown solid; yield: 16%. MALDI-TOF-MS calcd for M+, C114H48N6O6F36: 2185.340; found: 2185.596. 1H NMR (400 MHz, CDCl3): δ = 7.66 (d, J = 7.4 Hz, 24 H), 7.58 (d, J = 7.8 Hz, 24 H). 13C NMR (300 MHz, CDCl3): δ = 168.9, 137.1, 132.5, 131.9, 131.3, 130.3, 125.8,125.4. 13C NMR DEPT135 (101 MHz, CDCl3): δ = 130.3, 126.1. 13C NMR DEPT90 (75 MHz, CDCl3): δ = 130.3, 126.1. 19F NMR (282 MHz, CDCl3): δ = –63.25. MALDI-TOF calcd for M+, C114H48F36N6: 2185.340; found: 2185.956.
For applications of organic electronics, see: