Semin Neurol 2020; 40(06): 696-707
DOI: 10.1055/s-0040-1719072
Review Article

Surgical Treatments of Epilepsy

Shahjehan Ahmad
1   Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
,
Ryan Khanna
1   Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
,
1   Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
› Author Affiliations

Abstract

Nearly 30% of epilepsy patients are refractory to medical therapy. Surgical management of epilepsy is an increasingly viable option for these patients. Although surgery has historically been used as a palliative option, improvements in technology and outcomes show its potential in certain subsets of patients. This article reviews the two main categories of surgical epilepsy treatment—resective surgery and neuromodulation. Resective surgery includes temporal lobe resections, extratemporal resections, laser interstitial thermal therapy, and disconnection procedures. We discuss the three main types of neuromodulation—vagal nerve stimulation, responsive neurostimulation, and deep brain stimulation for epilepsy. The history and indications are explored for each type of treatment. Given the myriad types of resection and neuromodulation techniques, patient selection is reviewed in detail, with a discussion on which patients are most likely to benefit from different treatment strategies. We also discuss outcomes with examples of the pertinent landmark trials and their results. Finally, complications and surgical technique are reviewed. As new indications emerge and patient selection is refined, surgical management will continue to evolve as an adjuvant therapy for epileptic patients.



Publication History

Article published online:
11 November 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Fiest KM, Sauro KM, Wiebe S. et al. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology 2017; 88 (03) 296-303
  • 2 West S, Nevitt SJ, Cotton J. et al. Surgery for epilepsy. Cochrane Database Syst Rev 2019; 6: CD010541
  • 3 Winn HR, Youmans JR. Youmans Neurological Surgery. 5th ed. Philadelphia, PA: W.B Saunders; 2004. . (lxiv, 5296, cviii) ill. (some col.) 5228 cm. + 5291 CD-ROM (5294 5293/5294 in.)
  • 4 Callaghan BC, Anand K, Hesdorffer D, Hauser WA, French JA. Likelihood of seizure remission in an adult population with refractory epilepsy. Ann Neurol 2007; 62 (04) 382-389
  • 5 Englot DJ, Birk H, Chang EF. Seizure outcomes in nonresective epilepsy surgery: an update. Neurosurg Rev 2017; 40 (02) 181-194
  • 6 Asadi-Pooya AA, Rostami C. History of surgery for temporal lobe epilepsy. Epilepsy Behav 2017; 70 (Pt A): 57-60
  • 7 Moran NF. A more balanced and inclusive view of the history of temporal lobectomy. Epilepsia 2008; 49 (03) 543-544
  • 8 Penfield W, Flanigin H. Surgical therapy of temporal lobe seizures. AMA Arch Neurol Psychiatry 1950; 64 (04) 491-500
  • 9 Bailey P, Gibbs FA. The surgical treatment of psychomotor epilepsy. J Am Med Assoc 1951; 145 (06) 365-370
  • 10 Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342 (05) 314-319
  • 11 Kwan P, Arzimanoglou A, Berg AT. et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010; 51 (06) 1069-1077
  • 12 Engel Jr J, McDermott MP, Wiebe S. Early Randomized Surgical Epilepsy Trial (ERSET) Study Group. et al. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 2012; 307 (09) 922-930
  • 13 Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol 2014; 40 (05) 520-543
  • 14 Blümcke I, Thom M, Aronica E. et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013; 54 (07) 1315-1329
  • 15 No YJ, Zavanone C, Bielle F. et al. Medial temporal lobe epilepsy associated with hippocampal sclerosis is a distinctive syndrome. J Neurol 2017; 264 (05) 875-881
  • 16 Gataullina S, Dulac O, Bulteau C. Temporal lobe epilepsy in infants and children. Rev Neurol (Paris) 2015; 171 (03) 252-258
  • 17 Josephson CB, Rosenow F, Al-Shahi Salman R. Intracranial vascular malformations and epilepsy. Semin Neurol 2015; 35 (03) 223-234
  • 18 West S, Nolan SJ, Cotton J. et al. Surgery for epilepsy. Cochrane Database Syst Rev 2015; (07) CD010541
  • 19 Miller JW, Hakimian S. Surgical treatment of epilepsy. Continuum (Minneap Minn) 2013; 19 (3 Epilepsy): 730-742
  • 20 Smith AP, Sani S, Kanner AM. et al. Medically intractable temporal lobe epilepsy in patients with normal MRI: surgical outcome in twenty-one consecutive patients. Seizure 2011; 20 (06) 475-479
  • 21 Boling WW. Surgical considerations of intractable mesial temporal lobe epilepsy. Brain Sci 2018; 8 (02) E35
  • 22 Wieser HG. ILAE Commission on Neurosurgery of Epilepsy. ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2004; 45 (06) 695-714
  • 23 Goldenholz DM, Jow A, Khan OI. et al. Preoperative prediction of temporal lobe epilepsy surgery outcome. Epilepsy Res 2016; 127: 331-338
  • 24 Allone C, Lo Buono V, Corallo F. et al. Neuroimaging and cognitive functions in temporal lobe epilepsy: a review of the literature. J Neurol Sci 2017; 381: 7-15
  • 25 Duncan JS. Imaging in the surgical treatment of epilepsy. Nat Rev Neurol 2010; 6 (10) 537-550
  • 26 Osipowicz K, Sperling MR, Sharan AD, Tracy JI. Functional MRI, resting state fMRI, and DTI for predicting verbal fluency outcome following resective surgery for temporal lobe epilepsy. J Neurosurg 2016; 124 (04) 929-937
  • 27 Chan AY, Kharrat S, Lundeen K. et al. Length of stay for patients undergoing invasive electrode monitoring with stereoelectroencephalography and subdural grids correlates positively with increased institutional profitability. Epilepsia 2017; 58 (06) 1023-1026
  • 28 Iwasaki M, Jin K, Nakasato N, Tominaga T. Non-invasive evaluation for epilepsy surgery. Neurol Med Chir (Tokyo) 2016; 56 (10) 632-640
  • 29 Barnett GH, Burgess RC, Awad IA, Skipper GJ, Edwards CR, Luders H. Epidural peg electrodes for the presurgical evaluation of intractable epilepsy. Neurosurgery 1990; 27 (01) 113-115
  • 30 Bingaman WE, Bulacio J. Placement of subdural grids in pediatric patients: technique and results. Childs Nerv Syst 2014; 30 (11) 1897-1904
  • 31 Valentín A, Hernando-Quintana N, Moles-Herbera J. et al. Depth versus subdural temporal electrodes revisited: Impact on surgical outcome after resective surgery for epilepsy. Clin Neurophysiol 2017; 128 (03) 418-423
  • 32 Chang EF, Englot DJ, Vadera S. Minimally invasive surgical approaches for temporal lobe epilepsy. Epilepsy Behav 2015; 47: 24-33
  • 33 Hoyt AT, Smith KA. Selective Amygdalohippocampectomy. Neurosurg Clin N Am 2016; 27 (01) 1-17
  • 34 Alonso Vanegas MA, Lew SM, Morino M, Sarmento SA. Microsurgical techniques in temporal lobe epilepsy. Epilepsia 2017; 58 (Suppl. 01) 10-18
  • 35 Schaller K, Cabrilo I. Anterior temporal lobectomy. Acta Neurochir (Wien) 2016; 158 (01) 161-166
  • 36 Ghizoni E, Almeida JP, Joaquim AF. et al. Modified anterior temporal lobectomy: anatomical landmarks and operative technique. J Neurol Surg A Cent Eur Neurosurg 2015; 76 (05) 407-414
  • 37 Tan LA, Byrne RW. Anterior temporal sulcus: a reliable intraoperative landmark for accurately delineating the superior limit of amygdala resection during anterior temporal lobectomy. Stereotact Funct Neurosurg 2015; 93 (05) 360-365
  • 38 Spencer D, Burchiel K. Selective amygdalohippocampectomy. Epilepsy Res Treat 2012; 2012: 382095
  • 39 Yang PF, Zhang HJ, Pei JS. et al. Neuropsychological outcomes of subtemporal selective amygdalohippocampectomy via a small craniotomy. J Neurosurg 2016; 125 (01) 67-74
  • 40 Silbergeld DL, Ojemann GA. The tailored temporal lobectomy. Neurosurg Clin N Am 1993; 4 (02) 273-281
  • 41 Mikula AL, ReFaey K, Grewal SS, Britton JW, Van Gompel JJ. Medial temporal encephalocele and medically intractable epilepsy: a tailored inferior temporal lobectomy and case report. Oper Neurosurg (Hagerstown) 2020; 18 (01) E19-E22
  • 42 Qiu B, Ou S, Song T. et al. Intraoperative electrocorticography-guided microsurgical management for patients with onset of supratentorial neoplasms manifesting as epilepsy: a review of 65 cases. Epileptic Disord 2014; 16 (02) 175-184
  • 43 Tandon N, Esquenazi Y. Resection strategies in tumoral epilepsy: is a lesionectomy enough?. Epilepsia 2013; 54 (Suppl. 09) 72-78
  • 44 Bannout F, Harder S, Lee M. et al. Epilepsy Surgery for Skull-Base Temporal Lobe Encephaloceles: Should We Spare the Hippocampus from Resection?. Brain Sci 2018; 8 (Suppl. 03) 42
  • 45 Yang T, Hakimian S, Schwartz TH. Intraoperative ElectroCorticoGraphy (ECog): indications, techniques, and utility in epilepsy surgery. Epileptic Disord 2014; 16 (03) 271-279
  • 46 Wiebe S, Blume WT, Girvin JP, Eliasziw M. Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001; 345 (05) 311-318
  • 47 Spencer S, Huh L. Outcomes of epilepsy surgery in adults and children. Lancet Neurol 2008; 7 (06) 525-537
  • 48 Téllez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 2005; 128 (Pt 5): 1188-1198
  • 49 Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA 2015; 313 (03) 285-293
  • 50 Galovic M, Baudracco I, Wright-Goff E. et al. Association of piriform cortex resection with surgical outcomes in patients with temporal lobe epilepsy. JAMA Neurol 2019; 76 (06) 690-700
  • 51 Josephson CB, Dykeman J, Fiest KM. et al. Systematic review and meta-analysis of standard vs selective temporal lobe epilepsy surgery. Neurology 2013; 80 (18) 1669-1676
  • 52 Falowski SM, Wallace D, Kanner A. et al. Tailored temporal lobectomy for medically intractable epilepsy: evaluation of pathology and predictors of outcome. Neurosurgery 2012; 71 (03) 703-709 , discussion 709
  • 53 Kerezoudis P, McCutcheon B, Murphy ME. et al. Thirty-day postoperative morbidity and mortality after temporal lobectomy for medically refractory epilepsy. J Neurosurg 2018; 128 (04) 1158-1164
  • 54 Brotis AG, Giannis T, Kapsalaki E, Dardiotis E, Fountas KN. Complications after Anterior Temporal Lobectomy for Medically Intractable Epilepsy: A Systematic Review and Meta-Analysis. Stereotact Funct Neurosurg 2019; 97 (02) 69-82
  • 55 Tebo CC, Evins AI, Christos PJ, Kwon J, Schwartz TH. Evolution of cranial epilepsy surgery complication rates: a 32-year systematic review and meta-analysis. J Neurosurg 2014; 120 (06) 1415-1427
  • 56 Sherman EM, Wiebe S, Fay-McClymont TB. et al. Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia 2011; 52 (05) 857-869
  • 57 Helmstaedter C, Reuber M, Elger CC. Interaction of cognitive aging and memory deficits related to epilepsy surgery. Ann Neurol 2002; 52 (01) 89-94
  • 58 Wolf RL, Ivnik RJ, Hirschorn KA, Sharbrough FW, Cascino GD, Marsh WR. Neurocognitive efficiency following left temporal lobectomy: standard versus limited resection. J Neurosurg 1993; 79 (01) 76-83
  • 59 Tanriverdi T, Dudley RW, Hasan A. et al. Memory outcome after temporal lobe epilepsy surgery: corticoamygdalohippocampectomy versus selective amygdalohippocampectomy. J Neurosurg 2010; 113 (06) 1164-1175
  • 60 Ramey WL, Martirosyan NL, Lieu CM, Hasham HA, Lemole Jr GM, Weinand ME. Current management and surgical outcomes of medically intractable epilepsy. Clin Neurol Neurosurg 2013; 115 (12) 2411-2418
  • 61 Knerlich-Lukoschus F, Connolly MB, Hendson G, Steinbok P, Dunham C. Clinical, imaging, and immunohistochemical characteristics of focal cortical dysplasia Type II extratemporal epilepsies in children: analyses of an institutional case series. J Neurosurg Pediatr 2017; 19 (02) 182-195
  • 62 Giulioni M, Marucci G, Pelliccia V. et al. Commission for Epilepsy Surgery of the Italian League Against Epilepsy. Epilepsy surgery of “low grade epilepsy associated neuroepithelial tumors”: a retrospective nationwide Italian study. Epilepsia 2017; 58 (11) 1832-1841
  • 63 Pitkänen A, Roivainen R, Lukasiuk K. Development of epilepsy after ischaemic stroke. Lancet Neurol 2016; 15 (02) 185-197
  • 64 Blount JP. Extratemporal resections in pediatric epilepsy surgery-an overview. Epilepsia 2017; 58 (Suppl. 01) 19-27
  • 65 Busch RM, Floden DP, Ferguson L. et al. Neuropsychological outcome following frontal lobectomy for pharmacoresistant epilepsy in adults. Neurology 2017; 88 (07) 692-700
  • 66 Englot DJ, Wang DD, Rolston JD, Shih TT, Chang EF. Rates and predictors of long-term seizure freedom after frontal lobe epilepsy surgery: a systematic review and meta-analysis. J Neurosurg 2012; 116 (05) 1042-1048
  • 67 Noe K, Sulc V, Wong-Kisiel L. et al. Long-term outcomes after nonlesional extratemporal lobe epilepsy surgery. JAMA Neurol 2013; 70 (08) 1003-1008
  • 68 Cascino GD. Surgical treatment for extratemporal epilepsy. Curr Treat Options Neurol 2004; 6 (03) 257-262
  • 69 Wicks RT, Jermakowicz WJ, Jagid JR. et al. Laser interstitial thermal therapy for mesial temporal lobe epilepsy. Neurosurgery 2016; 79 (Suppl. 01) S83-S91
  • 70 Bown SG. Phototherapy in tumors. World J Surg 1983; 7 (06) 700-709
  • 71 Sugiyama K, Sakai T, Fujishima I, Ryu H, Uemura K, Yokoyama T. Stereotactic interstitial laser-hyperthermia using Nd-YAG laser. Stereotact Funct Neurosurg 1990; 54-55: 501-505
  • 72 Curry DJ, Gowda A, McNichols RJ, Wilfong AA. MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy Behav 2012; 24 (04) 408-414
  • 73 Gross RE, Stern MA, Willie JT. et al. Stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Ann Neurol 2018; 83 (03) 575-587
  • 74 Grewal SS, Tatum WO. Laser thermal ablation in epilepsy. Expert Rev Neurother 2019; 19 (12) 1211-1218
  • 75 Xue F, Chen T, Sun H. Postoperative outcomes of magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (LITT) in the treatment of drug-resistant epilepsy: a meta-analysis. Med Sci Monit 2018; 24: 9292-9299
  • 76 King-Stephens D. What is the best target for ablation of mesial temporal lobe epilepsy?. Epilepsy Curr 2019; 19 (05) 313-315
  • 77 LaRiviere MJ, Gross RE. Stereotactic laser ablation for medically intractable epilepsy: the next generation of minimally invasive epilepsy surgery. Front Surg 2016; 3: 64
  • 78 Le S, Ho AL, Fisher RS. et al. Laser interstitial thermal therapy (LITT): seizure outcomes for refractory mesial temporal lobe epilepsy. Epilepsy Behav 2018; 89: 37-41
  • 79 Xu DS, Chen T, Hlubek RJ. et al. Magnetic resonance imaging-guided laser interstitial thermal therapy for the treatment of hypothalamic hamartomas: a retrospective review. Neurosurgery 2018; 83 (06) 1183-1192
  • 80 Ellis JA, Mejia Munne JC, Wang SH. et al. Staged laser interstitial thermal therapy and topectomy for complete obliteration of complex focal cortical dysplasias. J Clin Neurosci 2016; 31: 224-228
  • 81 Hooten KG, Werner K, Mikati MA, Muh CR. MRI-guided laser interstitial thermal therapy in an infant with tuberous sclerosis: technical case report. J Neurosurg Pediatr 2018; 23 (01) 92-97
  • 82 Hoppe C, Witt JA, Helmstaedter C, Gasser T, Vatter H, Elger CE. Laser interstitial thermotherapy (LiTT) in epilepsy surgery. Seizure 2017; 48: 45-52
  • 83 Dadey DY, Kamath AA, Leuthardt EC, Smyth MD. Laser interstitial thermal therapy for subependymal giant cell astrocytoma: technical case report. Neurosurg Focus 2016; 41 (04) E9
  • 84 Ho AL, Miller KJ, Cartmell S, Inoyama K, Fisher RS, Halpern CH. Stereotactic laser ablation of the splenium for intractable epilepsy. Epilepsy Behav Case Rep 2016; 5: 23-26
  • 85 Lee EJ, Kalia SK, Hong SH. A primer on magnetic resonance-guided laser interstitial thermal therapy for medically refractory epilepsy. J Korean Neurosurg Soc 2019; 62 (03) 353-360
  • 86 Gross RE, Willie JT, Drane DL. The role of stereotactic laser amygdalohippocampotomy in mesial temporal lobe epilepsy. Neurosurg Clin N Am 2016; 27 (01) 37-50
  • 87 Englot DJ. A modern epilepsy surgery treatment algorithm: Incorporating traditional and emerging technologies. Epilepsy Behav 2018; 80: 68-74
  • 88 Bezchlibnyk YB, Willie JT, Gross RE. A neurosurgeon's view: laser interstitial thermal therapy of mesial temporal lobe structures. Epilepsy Res 2018; 142: 135-139
  • 89 Wu C, Jermakowicz WJ, Chakravorti S. et al. Effects of surgical targeting in laser interstitial thermal therapy for mesial temporal lobe epilepsy: A multicenter study of 234 patients. Epilepsia 2019; 60 (06) 1171-1183
  • 90 Willie JT, Laxpati NG, Drane DL. et al. Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Neurosurgery 2014; 74 (06) 569-584 , discussion 584–585
  • 91 Sperry RW, Miner N. Pattern perception following insertion of mica plates into visual cortex. J Comp Physiol Psychol 1955; 48 (06) 463-469
  • 92 Morrell F, Whisler WW, Bleck TP. Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 1989; 70 (02) 231-239
  • 93 Finet P, Santos LP, El Tahry R, Santos SF, Vaz GR, Raftopoulos C. Clinical outcome of radiating multiple subpial transections alone for drug resistant epilepsy after more than 5 years follow-up. World Neurosurg 2019; 126 (Mar): e1155-e1159
  • 94 Rolston JD, Deng H, Wang DD, Englot DJ, Chang EF. Multiple subpial transections for medically refractory epilepsy: a disaggregated review of patient-level data. Neurosurgery 2018; 82 (05) 613-620
  • 95 Graham D, Gill D, Dale RC, Tisdall MM. Corpus Callosotomy Outcomes Study Group. Seizure outcome after corpus callosotomy in a large paediatric series. Dev Med Child Neurol 2018; 60 (02) 199-206
  • 96 Kasasbeh AS, Smyth MD, Steger-May K, Jalilian L, Bertrand M, Limbrick DD. Outcomes after anterior or complete corpus callosotomy in children. Neurosurgery 2014; 74 (01) 17-28 , discussion 28
  • 97 Graham D, Tisdall MM, Gill D. Corpus callosotomy outcomes in pediatric patients: a systematic review. Epilepsia 2016; 57 (07) 1053-1068
  • 98 Rolston JD, Englot DJ, Knowlton RC, Chang EF. Rate and complications of adult epilepsy surgery in North America: analysis of multiple databases. Epilepsy Res 2016; 124: 55-62
  • 99 Chan AY, Rolston JD, Lee B, Vadera S, Englot DJ. Rates and predictors of seizure outcome after corpus callosotomy for drug-resistant epilepsy: a meta-analysis. J Neurosurg 2018; 130: 1-10
  • 100 Griessenauer CJ, Salam S, Hendrix P. et al. Hemispherectomy for treatment of refractory epilepsy in the pediatric age group: a systematic review. J Neurosurg Pediatr 2015; 15 (01) 34-44
  • 101 Holthausen H, May T, Adams C. et al. Seizures post hemispherectomy. In: Tuxhorn I, Holthausen H, Boenigk H. eds. Paediatric Epilepsy Syndromes and Their Surgical Treatment. London: John Libbey; 1997: 749-773
  • 102 Lew SM. Hemispherectomy in the treatment of seizures: a review. Transl Pediatr 2014; 3 (03) 208-217
  • 103 Engel Jr J. What can we do for people with drug-resistant epilepsy? The 2016 Wartenberg Lecture. Neurology 2016; 87 (23) 2483-2489
  • 104 Bailey P, Bremer F. A sensory cortical representation of the vagus nerve: with a note on the effects of low blood pressure on the cortical electrogram. J Neurophysiol 1938; 1 (05) 405-412
  • 105 The Vagus Nerve Stimulation Study Group. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology 1995; 45 (02) 224-230
  • 106 Dalkilic EB. Neurostimulation devices used in treatment of epilepsy. Curr Treat Options Neurol 2017; 19 (02) 7
  • 107 Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: Part II. Headache 2016; 56 (02) 259-266
  • 108 Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res 2018; 11: 203-213
  • 109 Ben-Menachem E. Neurostimulation-past, present, and beyond. Epilepsy Curr 2012; 12 (05) 188-191
  • 110 Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 2005; 29 (03) 493-500
  • 111 Yamamoto T. Vagus nerve stimulation therapy: indications, programing, and outcomes. Neurol Med Chir (Tokyo) 2015; 55 (05) 407-415
  • 112 Giordano F, Zicca A, Barba C, Guerrini R, Genitori L. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity. Epilepsia 2017; 58 (Suppl. 01) 85-90
  • 113 Murphy JV, Hornig G, Schallert G. Left vagal nerve stimulation in children with refractory epilepsy. Preliminary observations. Arch Neurol 1995; 52 (09) 886-889
  • 114 Englot DJ, Rolston JD, Wright CW, Hassnain KH, Chang EF. Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery 2016; 79 (03) 345-353
  • 115 Orosz I, McCormick D, Zamponi N. et al. Vagus nerve stimulation for drug-resistant epilepsy: a European long-term study up to 24 months in 347 children. Epilepsia 2014; 55 (10) 1576-1584
  • 116 Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res 2000; 42 (2-3): 203-210
  • 117 Chambers A, Bowen JM. Electrical stimulation for drug-resistant epilepsy: an evidence-based analysis. Ont Health Technol Assess Ser 2013; 13 (18) 1-37
  • 118 Helmers SL, Duh MS, Guérin A. et al. Clinical and economic impact of vagus nerve stimulation therapy in patients with drug-resistant epilepsy. Epilepsy Behav 2011; 22 (02) 370-375
  • 119 Helmers SL, Duh MS, Guérin A. et al. Clinical outcomes, quality of life, and costs associated with implantation of vagus nerve stimulation therapy in pediatric patients with drug-resistant epilepsy. Eur J Paediatr Neurol 2012; 16 (05) 449-458
  • 120 Handforth A, DeGiorgio CM, Schachter SC. et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology 1998; 51 (01) 48-55
  • 121 Osorio I, Frei MG, Sunderam S. et al. Automated seizure abatement in humans using electrical stimulation. Ann Neurol 2005; 57 (02) 258-268
  • 122 Matias CM, Sharan A, Wu C. Responsive neurostimulation for the treatment of epilepsy. Neurosurg Clin N Am 2019; 30 (02) 231-242
  • 123 Ma BB, Rao VR. Responsive neurostimulation: candidates and considerations. Epilepsy Behav 2018; 88: 388-395
  • 124 Benbadis SR, Geller E, Ryvlin P. et al. Putting it all together: options for intractable epilepsy: an updated algorithm on the use of epilepsy surgery and neurostimulation. Epilepsy Behav 2018; 88S: 33-38
  • 125 King-Stephens D, Mirro E, Weber PB. et al. Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia 2015; 56 (06) 959-967
  • 126 Morrell MJ. RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 2011; 77 (13) 1295-1304
  • 127 Heck CN, King-Stephens D, Massey AD. et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia 2014; 55 (03) 432-441
  • 128 Bergey GK, Morrell MJ, Mizrahi EM. et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 2015; 84 (08) 810-817
  • 129 Boon P, De Cock E, Mertens A, Trinka E. Neurostimulation for drug-resistant epilepsy: a systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response. Curr Opin Neurol 2018; 31 (02) 198-210
  • 130 Wei Z, Gordon CR, Bergey GK, Sacks JM, Anderson WS. Implant site infection and bone flap osteomyelitis associated with the neuropace responsive neurostimulation system. World Neurosurg 2016; 88: 687.e1-687.e6
  • 131 Zangiabadi N, Ladino LD, Sina F, Orozco-Hernández JP, Carter A, Téllez-Zenteno JF. Deep brain stimulation and drug-resistant epilepsy: a review of the literature. Front Neurol 2019; 10: 601
  • 132 Cooper IS, Amin I, Riklan M, Waltz JM, Poon TP. Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch Neurol 1976; 33 (08) 559-570
  • 133 Boon P, Vonck K, De Herdt V. et al. Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 2007; 48 (08) 1551-1560
  • 134 Feinstein B, Gleason CA, Libet B. Stimulation of locus coeruleus in man. Preliminary trials for spasticity and epilepsy. Stereotact Funct Neurosurg 1989; 52 (01) 26-41
  • 135 Upton AR, Cooper IS, Springman M, Amin I. Suppression of seizures and psychosis of limbic system origin by chronic stimulation of anterior nucleus of the thalamus. Int J Neurol (1985-1986): 19-20: 223-230
  • 136 Franzini A, Messina G, Marras C, Villani F, Cordella R, Broggi G. Deep brain stimulation of two unconventional targets in refractory non-resectable epilepsy. Stereotact Funct Neurosurg 2008; 86 (06) 373-381
  • 137 Marino Júnior R, Gronich G. Corpus callosum stimulation and stereotactic callosotomy in the management of refractory generalized epilepsy. Preliminary communication. Arq Neuropsiquiatr 1989; 47 (03) 320-325
  • 138 Drlicková V, Sramka M, Ondrejcáková G, Nádvorník P. Stimulation of the caudate nucleus in the treatment of epilepsy [in Slovak]. Cesk Neurol Neurochir 1983; 46 (05) 301-304
  • 139 Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology 2002; 59 (06) (Suppl. 04) S3-S14
  • 140 Kerrigan JF, Litt B, Fisher RS. et al. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia 2004; 45 (04) 346-354
  • 141 Fisher R, Salanova V, Witt T. SANTE Study Group. et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010; 51 (05) 899-908
  • 142 Whiting BB, Whiting AC, Whiting DM. Thalamic deep brain stimulation. Prog Neurol Surg 2018; 33: 198-206
  • 143 Salanova V. Deep brain stimulation for epilepsy. Epilepsy Behav 2018; 88S: 21-24
  • 144 Li MCH, Cook MJ. Deep brain stimulation for drug-resistant epilepsy. Epilepsia 2018; 59 (02) 273-290
  • 145 Sprengers M, Vonck K, Carrette E, Marson AG, Boon P. Deep brain and cortical stimulation for epilepsy. Cochrane Database Syst Rev 2017; 7: CD008497
  • 146 Tröster AI, Meador KJ, Irwin CP, Fisher RS. SANTE Study Group. Memory and mood outcomes after anterior thalamic stimulation for refractory partial epilepsy. Seizure 2017; 45: 133-141