RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2021; 32(20): 2071-2074
DOI: 10.1055/s-0040-1719844
DOI: 10.1055/s-0040-1719844
letter
Stereoselective Synthesis of (–)-Heliannuol E by α-Selective Propargyl Substitution
This work was supported by Japan Society for the Promotion of Science KAKENHI Grant Number 20K05501.

Abstract
This paper describes a stereoselective synthesis of (–)-heliannuol E through intramolecular cyclization of a phenol mesylate. The introduction of the aromatic group was achieved by α-selective propargyl substitution of a propargylic phosphate.
Key words
heliannuol E - propargyl substitution - stereoselectivity - asymmetric synthesis - intramolecular cyclizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719844.
- Supporting Information
Publikationsverlauf
Eingereicht: 10. September 2021
Angenommen nach Revision: 28. September 2021
Artikel online veröffentlicht:
19. Oktober 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Macías FA, Varela RM, Torres A, Molinillo JM. G. Tetrahedron Lett. 1993; 34: 1999
- 1b Macías FA, Molinillo JM. G, Varela RM, Torres A. J. Org. Chem. 1994; 59: 8261
- 1c Macías FA, Varela RM, Torres A, Molinillo JM. G. J. Nat. Prod. 1999; 62: 1636
- 1d Macías FA, Torres A, Galindo JL. G, Varela RM, Álvarez JA, Molinillo JM. G. Phytochemistry 2002; 61: 687
- 1e El Marsni Z, Torres A, Varela RM, Molinillo JM. G, Casas L, Mantell C, Martinez de la Ossa EJ, Macias FA. J. Agric. Food Chem. 2015; 63: 6410
- 2 Macías FA, Varela RM, Torres A, Molinillo JM. G. J. Chem. Ecol. 2000; 26: 2173
- 3 Macías FA, Varela RM, Torres A, Molinillo JM. G. Tetrahedron Lett. 1999; 40: 4725
- 4a Sato K, Yoshimura T, Shindo M, Shishido K. J. Org. Chem. 2001; 66: 309
- 4b Doi F, Ogamino T, Sugai T, Nishiyama S. Synlett 2003; 411
- 4c Kamei T, Shindo M, Shishido K. Synlett 2003; 2395
- 4d Doi F, Ogamino T, Sugai T, Nishiyama S. Tetrahedron Lett. 2003; 44: 4877
- 4e Vyvyan JR, Oaksmith JM, Parks BW, Peterson EM. Tetrahedron Lett. 2005; 46: 2457
- 4f Kamei T, Takahashi T, Yoshida M, Shishido K. Heterocycles 2009; 78: 1439
- 4g Liu Y, Huang C, Liu B. Tetrahedron Lett. 2011; 52: 5802
- 4h Gao F, Carr JL, Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 2149
- 4i Sandmeier T, Carreira EM. Org. Lett. 2020; 22: 1135
- 5 Kobayashi Y, Takashima Y, Motoyama Y, Isogawa Y, Katagiri K, Tsuboi A, Ogawa N. Chem. Eur. J. 2021; 27: 3779
- 6 Matsumura K, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1997; 119: 8738
- 7 Buffham WJ, Swain NA, Kostiuk SL, Gonçalves TP, Harrowven DC. Eur. J. Org. Chem. 2012; 2012: 1217
- 8 The stereochemistry of propargylic alcohols 27 and dia-27 was tentatively assigned by the catalyst selectivity for the reduction of ketone 19 to 27, and unambiguously determined from the optical rotation of the synthesized (–)-heliannuol E (5).
- 9 Aerssens MH. P. J, van der Heiden R, Heus M, Brandsma L. Synth. Commun. 1990; 20: 3421
- 10 Osaka M, Kanematsu M, Yoshida M, Shishido K. Tetrahedron: Asymmetry 2010; 21: 2319
- 11 The reaction of 35 with TBSCl resulted only in production of compound 36, and the disilyl ether was not formed. The regioisomer was not formed because of steric hindrance.
- 12 (–)-Heliannuol E (5) K2CO3 (73.9 mg, 0.535 mmol) was added to an ice-cold solution of olefin 36 (58.3 mg, 0.127 mmol) in MeOH (10 mL). The mixture was stirred at 0 °C for 1 h, then heated and stirred at 45 °C for 15 h. The mixture was then diluted with 3 N aq HCl to pH 5–6 and extracted with Et2O (×3). The combined extracts were dried (MgSO4) and concentrated. The residue was purified by recycling HPLC [LC-Forte/R equipped with YMC-Pack SIL-60, hexane–EtOAc (4:1), 25 mL/min] to give a colorless oil; yield: 22.7 mg (67%); Rf = 0.33 (hexane–EtOAc, 3:1); [α]D 26 –69 (c 0.33, CHCl3) [Lit.3 –68.6 (c 0.1, CHCl3)]. IR (neat): 3379, 1635, 1196 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.24 (s, 3 H), 1.30 (s, 3 H), 1.82–1.97 (m, 2 H), 2.20 (s, 3 H), 2.33–2.38 (br s, 1 H), 3.43–3.52 (m, 1 H), 3.74 (dd, J = 10.4, 3.6 Hz, 1 H), 4.35 (s, 1 H), 4.91 (dd, J = 16.8, 1.6 Hz, 1 H), 5.11 (dd, J = 10.4, 1.6 Hz, 1 H), 6.08 (ddd, J = 16.8, 10.4, 6.4 Hz, 1 H), 6.49 (s, 1 H), 6.66 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 15.8, 24.3, 26.0, 27.6, 38.0, 72.1, 77.6, 115.9, 116.0, 118.6, 120.7, 124.2, 142.2, 147.5, 148.3. HRMS (FD): m/z [M]+ calcd for C15H20O3: 248.14124; found: 248.14106.