Synlett 2022; 33(01): 1-7
DOI: 10.1055/s-0040-1719853
synpacts

Confining the Inner Space of Strained Carbon Nanorings

Niklas Grabicki
,
Oliver Dumele
N.G. was supported by a doctoral fellowship of the Fonds der Chemischen Industrie (FCI) and O.D. thanks the FCI for a generous Liebig scholarship.


Abstract

Strained aromatic macrocycles based on cycloparaphenylenes (CPPs) are the shortest repeating units of armchair single-walled carbon nanotubes. Since the development of several new synthetic methodologies for accessing these structures, their properties have been extensively studied. Besides the fundamental interest in these novel molecular scaffolds, their application in the field of materials science is an ongoing topic of research. Most of the reported CPP-type macrocycles display strong binding toward fullerenes, due to the perfect match between the convex and concave π-surfaces of fullerenes and CPPs, respectively. Highly functionalized CPP derivatives capable of supramolecular binding with other molecules are rarely reported. The synthesis of highly functionalized [n]cyclo-2,7-pyrenylenes leads to CPP-type macrocycles with a defined cavity capable of binding non-fullerene guests with high association constants.



Publication History

Received: 06 September 2021

Accepted after revision: 13 October 2021

Article published online:
15 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kerfeld A, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO. Science 2005; 309: 936
    • 2a Agapakis CM, Boyle PM, Silver PA. Nat. Chem. Biol. 2012; 8: 527
    • 2b Loll B, Kern J, Saenger W, Zouni A, Biesiadka J. Nature 2005; 438: 1040
  • 3 Liu W, Stoddart JF. Chem 2021; 7: 919
  • 4 Gutsche CD. Acc. Chem. Res. 1983; 16: 161
  • 5 Hogberg AG. S. J. Org. Chem. 1980; 45: 4498
  • 6 Timmerman P, Verboom W, Reinhoudt DN. Tetrahedron 1996; 52: 2663
  • 7 Freeman WA, Mock WL, Shih NY. J. Am. Chem. Soc. 1981; 103: 7367
  • 8 Ogoshi T, Kanai S, Fujinami S, Yamagishi T.-a, Nakamoto Y. J. Am. Chem. Soc. 2008; 130: 5022
  • 9 Breslow R. Acc. Chem. Res. 1995; 28: 146
  • 10 Kim JS, Quang DT. Chem. Rev. 2015; 107: 3780
  • 11 Assaf KI, Nau WM. Chem. Soc. Rev. 2015; 44: 394
  • 12 Zhang D, Ronson TK, Greenfield JL, Brotin T, Berthault P, Leónce E, Zhu J.-L, Xu L, Nitschke JR. J. Am. Chem. Soc. 2020; 141: 8339
  • 13 Rousseaux SA. L, Gong JQ, Haver R, Odell B, Claridge TD. W, Herz LM, Anderson HL. J. Am. Chem. Soc. 2015; 137: 12713
  • 14 Wu H, Wang Y, Jones LO, Liu W, Song B, Cui Y, Cai K, Zhang L, Shen D, Chen X.-Y, Jiao Y, Stern CL, Li X, Schatz GC, Stoddart JF. J. Am. Chem. Soc. 2020; 142: 16849
  • 15 Vögtle BF, Müller WM. Angew. Chem. Int. Ed. 1979; 18: 623
  • 16 Kim S.-Y, Jung I.-S, Lee E, Kim J, Sakamoto S, Yamaguchi K, Kim K. Angew. Chem. Int. Ed. 2001; 40: 2119
  • 17 Grabicki N, Nguyen KT. D, Weidner S, Dumele O. Angew. Chem. Int. Ed. 2021; 60: 14909
  • 18 Kamitori S, Hirotsu K, Higuchi T. J. Am. Chem. Soc. 1987; 109: 2409
  • 19 Liu P, Neuhaus P, Kondratuk DV, Balaban TS, Anderson HL. Angew. Chem. Int. Ed. 2014; 53: 7770
  • 20 Lützen A, Renslo AR, Schalley CA, O’Leary BM, Rebek J. J. Am. Chem. Soc. 1999; 121: 7455
  • 21 Parac TN, Scherer M, Raymond KN. Angew. Chem. Int. Ed. 2000; 39: 1239
  • 22 Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
  • 23 Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K. Angew. Chem. Int. Ed. 2009; 48: 6112
  • 24 Yamago S, Watanabe Y, Iwamoto T. Angew. Chem. Int. Ed. 2010; 49: 757
  • 25 Tsuchido Y, Abe R, Ide T, Osakada K. Angew. Chem. Int. Ed. 2020; 59: 22928
  • 26 Segawa Y, Fukazawa A, Matsuura S, Omachi H, Yamaguchi S, Irle S, Itami K. Org. Biomol. Chem. 2012; 10: 5979
  • 27 Yamago S, Kayahara E, Iwamoto T. Chem. Rec. 2014; 14: 84
  • 28 Darzi ER, Jasti R. Chem. Soc. Rev. 2015; 44: 6401
  • 29 Hermann M, Wassy D, Esser B. Angew. Chem. Int. Ed. 2021; 60: 15743
  • 30 Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S. Angew. Chem. Int. Ed. 2011; 50: 8342
  • 31 Xu Y, Kaur R, Wang B, Minameyer MB, Gsänger S, Meyer B, Drewello T, Guldi DM, von Delius M. J. Am. Chem. Soc. 2018; 140: 13413
  • 32 Cui S, Zhuang G, Lu D, Huang Q, Jia H, Wang Y, Yang S, Du P. Angew. Chem. Int. Ed. 2018; 57: 9330
  • 33 Rio J, Beeck S, Rotas G, Ahles S, Jacquemin D, Tagmatarchis N, Ewels C, Wegner HA. Angew. Chem. Int. Ed. 2018; 57: 6930
  • 34 Huang Q, Zhuang G, Jia H, Qian M, Cui S, Yang S, Du P. Angew. Chem. Int. Ed. 2019; 58: 6244
  • 35 Isobe H, Hitosugi S, Yamasaki T, Iizuka R. Chem. Sci. 2013; 4: 1293
  • 36 Matsuno T, Nakai Y, Sato S, Maniwa Y, Isobe H. Nat. Commun. 2018; 9: 1907
  • 37 Li K, Xu Z, Deng H, Zhou Z, Dang Y, Sun Z. Angew. Chem. Int. Ed. 2021; 60: 7649
  • 38 Qiu Z.-L, Tang C, Wang X.-R, Ju Y.-Y, Chu K.-S, Deng Z.-Y, Hou H, Liu Y.-M, Tan Y.-Z. Angew. Chem. Int. Ed. 2020; 59: 20868
  • 39 Toyota S, Tsurumaki E. Chem. Eur. J. 2019; 25: 6878
  • 40 Bachrach SM. Chem. Commun. 2019; 55: 3650
  • 41 Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S. Angew. Chem. 2011; 123: 8492
  • 42 Della Sala P, Talotta C, Caruso T, De Rosa M, Soriente A, Neri P, Gaeta C. J. Org. Chem. 2017; 82: 9885
  • 43 Matsuno T, Terasaki S, Kogashi K, Katsuno R, Isobe H. Nat. Commun. 2021; 12: 5062
  • 44 Della Sala P, Talotta C, De Rosa M, Soriente A, Geremia S, Hickey N, Neri P, Gaeta C. J. Org. Chem. 2019; 84: 9489
  • 45 Matsuno T, Ohtomo Y, Someya M, Isobe H. Nat. Commun. 2021; 12: 1575
  • 46 Kuwabara T, Orii J, Segawa Y, Itami K. Angew. Chem. Int. Ed. 2015; 54: 9646
  • 47 Lovell TC, Fosnacht KG, Colwell CE, Jasti R. Chem. Sci. 2020; 12029
  • 48 White BM, Zhao Y, Kawashima TE, Branchaud BP, Pluth MD, Jasti R. ACS Cent. Sci. 2018; 4: 1173
  • 49 Nishigaki S, Fukui M, Sugiyama H, Uekusa H, Kawauchi S, Shibata Y, Tanaka K. Chem. Eur. J. 2017; 23: 7227
  • 50 Iwamoto T, Kayahara E, Yasuda N, Suzuki T, Yamago S. Angew. Chem. Int. Ed. 2014; 53: 6430
  • 51 Mateo-Alonso A. Chem. Soc. Rev. 2014; 43: 6311
  • 52 Hu B.-L, Zhang K, An C, Schollmeyer D, Pisula W, Baumgarten M. Angew. Chem. Int. Ed. 2018; 57: 12375
  • 53 Merz J, Dietz M, Vonhausen Y, Wöber F, Friedrich A, Sieh D, Krummenacher I, Braunschweig H, Moos M, Holzapfel M, Lambert C, Marder TB. Chem. Eur. J. 2020; 26: 438
  • 54 Ueberricke L, Mizioch D, Ghalami F, Mildner F, Rominger F, Oeser T, Elstner M, Mastalerz M. Eur. J. Org. Chem. 2021; 4816
  • 55 Kayahara E, Qu R, Kojima M, Iwamoto T, Suzuki T, Yamago S. Chem. Eur. J. 2015; 21: 18939
  • 56 Sun Z, Mio T, Ikemoto K, Sato S, Isobe H. J. Org. Chem. 2019; 84: 3500
  • 57 Kayahara E, Hayashi T, Takeuchi K, Ozawa F, Ashida K, Ogoshi S, Yamago S. Angew. Chem. Int. Ed. 2018; 57: 11418
  • 58 Yoshigoe Y, Suzaki Y, Osakada K. Chem. Lett. 2014; 43: 1337
  • 59 Eaborn C, Odell K, Pidcock A. J. Chem. Soc., Dalton Trans. 1978; 357
  • 60 Matsuno T, Fujita M, Fukunaga K, Sato S, Isobe H. Nat. Commun. 2018; 9: 3779
  • 61 Colwell CE, Price TW, Stauch T, Jasti R. Chem. Sci. 2020; 11: 3923
  • 62 Maslak V, Yan Z, Xia S, Gallucci J, Hadad CM, Badjić JD. J. Am. Chem. Soc. 2006; 128: 5887
  • 63 Hermann K, Ruan Y, Hardin AM, Hadad CM, Badjić JD. Chem. Soc. Rev. 2015; 44: 500
  • 64 Houk KN, Nakamura K, Sheu C, Keating AE. Science 1996; 273: 627
  • 65 Barbour LJ. J. Appl. Crystallogr. 2020; 53: 1141
  • 66 van Heerden DP, Barbour LJ. Chem. Soc. Rev. 2021; 50: 735
  • 67 Mecozzi S, Rebek JJr. Chem. Eur. J. 1998; 4: 1016
  • 68 Hornung J, Fankhauser D, Shirtcliff LD, Praetorius A, Schweizer WB, Diederich F. Chem. Eur. J. 2011; 17: 12362
  • 69 Hitosugi S, Nakanishi W, Yamasaki T, Isobe H. Org. Lett. 2013; 15: 3199
  • 70 Wu Y.-T, Siegel JS. Chem. Rev. 2006; 106: 4843
  • 71 Dhbaibi K, Favereau L, Crassous J. Chem. Rev. 2019; 119: 8846
  • 72 Schwertfeger H, Fokin AA, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 1022
  • 73 Dubey RK, Melle-Franco M, Mateo-Alonso A. J. Am. Chem. Soc. 2021; 143: 6593
  • 74 Persch E, Dumele O, Diederich F. Angew. Chem. Int. Ed. 2015; 54: 3290
  • 75 Persch E, Bryson S, Todoroff NK, Eberle C, Thelemann J, Dirdjaja N, Kaiser M, Weber M, Derbani H, Brun R, Schneider G, Pai EF, Krauth-Siegel RL, Diederich F. ChemMedChem 2014; 9: 1880