Synlett 2022; 33(16): 1619-1624
DOI: 10.1055/s-0040-1719931
letter

Asymmetric Construction of Highly Functionalized Cyclobutanones Bearing Three Contiguous Stereogenic Centers by an Amino Acid Salt-Catalyzed Desymmetrization Reaction

Jingjie Wu
a   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang Province, P. R. of China
,
Fengda Bao
b   School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. of China
,
Xiaoxia Ye
b   School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. of China
,
Juan Li
a   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang Province, P. R. of China
,
Jun Jiang
a   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang Province, P. R. of China
› Author Affiliations
We are grateful for financial support from the Natural Science Foundation of Zhejiang Province (LY18B020011) and the Medical and Health Science and Technology Project of Zhejiang Province (2019KY097).


Abstract

We report an amino acid salt-catalyzed direct desymmetrization of 3-substituted cyclobutanones through a direct aldol reaction under mild reaction conditions. The developed method provides an array of highly functionalized cyclobutanones bearing three contiguous stereogenic centers in high yields and stereoselectivities with varied functional-group compatibility. Furthermore, the obtained adducts can be smoothly converted into polyfunctional 1,4-butyrolactones with maintained enantioselectivity.

Supporting Information



Publication History

Received: 13 February 2022

Accepted after revision: 17 May 2022

Article published online:
13 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Blaser HU. Chem. Rev. 1992; 92: 935

    • For a review on amino acid-derived chiral oxazoline ligands in asymmetric catalysis, see:
    • 1b Hargaden GC, Guiry PJ. Chem. Rev. 2009; 109: 2505

    • For a review on amino acid-derived amino alcohols as chiral auxiliaries in asymmetric synthesis, see:
    • 1c Ager DJ, Prakash I, Schaad DR. Chem. Rev. 1996; 96: 835

    • For reviews on amino acid-derived organocatalysts, see:
    • 1d Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 1e Xu L.-W, Lu Y. Org. Biomol. Chem. 2008; 6: 2047

      For selected examples, see:
    • 2a Darbre T, Machuqueiro M. Chem. Commun. 2003; 1090
    • 2b Fernandez-Lopez R, Kofoed J, Machuqueiro M, Darbre T. Eur. J. Org. Chem. 2005; 5268
    • 2c Kofoed J, Darbre T, Reymond J.-L. Chem. Commun. 2006; 1482
    • 2d Itoh S, Kitamura M, Yamada Y, Aoki S. Chem. Eur. J. 2009; 15: 10570
    • 2e Karmakar A, Maji T, Wittmann S, Reiser O. Chem. Eur. J. 2011; 17: 11024
    • 2f For amino acid salt-catalyzed Robinson annulations, see: Li P.-F, Yamamoto H. Chem. Commun. 2009; 5412
    • 2g Hayashi Y, Umekubo N, Hirama T. Org. Lett. 2017; 19: 4155
    • 2h Hayashi Y, Yamazaki T, Kawauchi G, Sato I. Org. Lett. 2018; 20: 2391
    • 3a Yamaguchi M, Shiraishi T, Hirama M. Angew. Chem. Int. Ed. 1993; 32: 1176
    • 3b Yamaguchi M, Shiraishi T, Hirama M. J. Org. Chem. 1996; 61: 3520
    • 3c Sato A, Yoshida M, Hara S. Chem. Commun. 2008; 6242
    • 3d Yoshida M, Narita M, Hirama K, Hara S. Tetrahedron Lett. 2009; 50: 7297
    • 3e Yoshida M, Sato A, Hara S. Org. Biomol. Chem. 2010; 8: 3031
    • 3f Yoshida M, Kitamikado N, Ikehara H, Hara S. J. Org. Chem. 2011; 76: 2305
    • 3g Yoshida M, Hirama K, Narita M, Hara S. Symmetry 2011; 3: 155
    • 3h Yoshida M, Narita M, Hara S. J. Org. Chem. 2011; 76: 8513
    • 3i Yoshida M, Masaki E, Ikehara H, Hara S. Org. Biomol. Chem. 2012; 10: 5289
    • 3j Xu K, Zhang S, Hu Y, Zha Z, Wang Z. Chem. Eur. J. 2013; 19: 3573
  • 4 Liu X, Qin B, Zhou X, He B, Feng X. J. Am. Chem. Soc. 2005; 127: 12224
    • 6a The Chemistry of Cyclobutanes . Rappoport ZZ, Liebman JF. Wiley; Chichester: 2005
    • 6b Seiser T, Saget T, Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
    • 6c Fan Y.-Y, Gao X.-H, Yue J.-M. Sci. China Chem. 2016; 59: 1126
    • 6d Beniddir MA, Evanno L, Joseph D, Skiredj A, Poupon E. Nat. Prod. Rep. 2016; 33: 820
    • 6e Dembitsky VM. Phytomedicine 2014; 21: 1559
    • 6f Liu X, Fu J, Yao X.-J, Yang J, Liu L, Xie T.-G, Jiang P.-C, Jiang Z.-H, Zhu G.-Y. J. Nat. Prod. 2018; 81: 1333

      For selected examples, see:
    • 7a Ishihara K, Nakano K. J. Am. Chem. Soc. 2007; 129: 8930
    • 7b Du JN, Skubi KL, Schultz DM, Yoon TP. Science 2014; 344: 392
    • 7c Conner ML, Xu Y, Brown MK. J. Am. Chem. Soc. 2015; 137: 3482
    • 7d Blum TR, Miller ZD, Bates DM, Guzei IA, Yoon TP. Science 2016; 354: 1391
    • 7e Chapman LM, Beck JC, Wu L, Reisman SE. J. Am. Chem. Soc. 2016; 138: 9803
    • 7f Huang X, Quinn TR, Harms K, Webster RD, Zhang L, Wiest O, Meggers E. J. Am. Chem. Soc. 2017; 139: 9120

      For recent reviews, see:
    • 8a Borissov A, Davies TQ, Ellis SR, Fleming TA, Richardson MS. W, Dixon DJ. Chem. Soc. Rev. 2016; 45: 5474
    • 8b Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330

      For examples of desymmetrizations of cyclobutanones, see:
    • 9a Aitken DJ, Bernard AM, Capitta F, Frongia A, Guillot R, Ollivier J, Piras PP, Seccib F, Spiga M. Org. Biomol. Chem. 2012; 10: 5045
    • 9b Reeves CM, Eidamshaus C, Kim J, Stoltz BM. Angew. Chem. Int. Ed. 2013; 52: 6718
    • 9c Guisán-Ceinos M, Parra A, Martín-Heras V, Tortosa M. Angew. Chem. Int. Ed. 2016; 55: 6969
  • 10 CCDC 2151723 contains the supplementary crystallographic data for compound 4n. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 11 Ethoxy 3-Oxocyclobutanecarboxylates 4as; General Procedure: A clean and dry Schlenk tube was charged with catalyst 1f (2.5–10 mol %) and the appropriate oxo ester 3 (0.2 mmol, 1 equiv) in anhyd DMA (0.3 mL), and the mixture was stirred vigorously at 0 °C or r.t. for 20 min. Subsequently, the appropriate cyclobutanone 2 (1.0 mmol, 5 equiv) was added and the resulting mixture was stirred at 0 °C or r.t. for 72–140 h until the reaction was complete. The mixture was then purified by flash column chromatography [silica gel, PE–EtOAc (10:1 to 8:1)]. Ethyl 2-[(2E)-1-Hydroxy-1-(isopropoxycarbonyl)-3-phenylprop-2-en-1-yl]-3-oxocyclobutanecarboxylate (4a) Prepared according to the general procedure and purified by flash column chromatography [silica gel, PE–EtOAc (10:1)] as a colorless liquid; yield: 64.1 mg (89%, 94% ee, dr 96:4); [α]D 26 –71.7 (c 0.605, EtOAc). HPLC [Daicel CHIRALPAK AD-H, hexane–i-PrOH (97:3), 1.0 mL/ min, 25 °C]: t R (major) = 19.202 min, t R (minor) = 21.953 min. 1H NMR (500 MHz, CDCl3): δ = 7.37 (d, J = 7.4 Hz, 2 H), 7.32 (t, J = 7.5 Hz, 2 H), 7.26–7.23 (m, 1 H), 6.89 (d, J = 15.8 Hz, 1 H), 6.11 (d, J = 15.7 Hz, 1 H), 5.18 (m, 1 H), 4.19 (m, 1 H), 4.10 (q, J = 7.2 Hz, 2 H), 3.73 (s, 1 H), 3.36–3.24 (m, 2 H), 3.15 (m, 1 H), 1.35 (d, J = 6.3 Hz, 3 H), 1.30 (d, J = 6.3 Hz, 3 H), 1.09 (t, J = 7.1 Hz, 3 H). 13C NMR (126 MHz, CDCl3) : δ = 202.5, 173.9, 172.1, 136.1, 131.8, 128.6, 128.1, 126.8, 126.5, 75.4, 71.5, 69.9, 61.3, 49.1, 30.0, 21.7, 21.6, 14.0. HRMS (ESI): m/z [M + H]+ calcd for C20H25O6: 361.1646; found: 316.1650. Ethyl 2-[(2E)-3-(2-Fluorophenyl)-1-hydroxy-1-(isopropoxycarbonyl)prop-2-en-1-yl]-3-oxocyclobutanecarboxylate (4b) Prepared according to the general procedure and purified by flash column chromatography [silica gel, PE–EtOAc (10:1)] as a colorless liquid; yield: 67.4 mg (89%, ee 91%; dr 94:6), [α]D 26 –100.4 (c 0.544, EtOAc). HPLC [Daicel CHIRALPAK AD-H, hexane–i-PrOH (95:5), 1.0 mL/min, 25 °C]: t R (major) = 14.812 min, t R (minor) = 17.445 min. 1H NMR (500 MHz, CDCl3): δ = 7.39 (t, J = 7.6 Hz, 1 H), 7.23 (m, 1 H), 7.09 (t, J = 7.5 Hz, 1 H), 7.03 (m, 2 H), 6.22 (d, J = 15.9 Hz, 1 H), 5.19 (m, 1 H), 4.18 (d, J = 6.8 Hz, 1 H), 4.12 (q, J = 7.1 Hz, 2 H), 3.71 (s, 1 H), 3.38–3.25 (m, 2 H), 3.15 (m, 1 H), 1.35 (d, J = 6.2 Hz, 3 H), 1.30 (d, J = 6.2 Hz, 3 H), 1.11 (t, J = 7.1 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 202.4, 173.9, 172.0, 161.5, 159.5, 129.5, 129.4, 129.3, 129.3, 128.2, 128.1, 124.7, 124.6, 124.1, 124.1, 124.0, 123.9, 115.9, 115.7, 75.6, 71.5, 69.9, 61.3, 49.1, 30.0, 21.7, 21.6, 13.9. HRMS (ESI): m/z [M + Na]+ calcd for C20H23FNaO6: 401.1371; found: 401.1384.