Subscribe to RSS
DOI: 10.1055/s-0040-1720148
Palladium-Catalyzed α-Arylation of Cycloalkanones with Sterically Hindered Bromoazines under Neat Conditions
Abstract
The palladium-catalyzed cross-coupling of cycloalkanones with a range of heteroaryl bromides is described herein. The transformation proceeds best with third-generation tris-tBu-phosphine Pd pre-catalyst in neat cycloalkanones. Careful screening of the reaction conditions revealed K3PO4 as an effective weak and mild base thereby tolerating base-sensitive functional groups such as acetals or nitrogen protecting groups. Moderate to good yields were achieved for a series of 29 examples with various degrees of structural complexity. Importantly, these optimized conditions allow the α-(hetero)aryl cross-coupling of ortho-substituted (hetero)aryl bromide substrates with different cycloalkanones that typically failed to react efficiently under previously reported conditions.
Key words
palladium catalysis - α-arylation - cycloalkanones - bromoazines - third-generation tris-tBu-phosphine Pd pre-catalyst - neat conditionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720148.
- Supporting Information
Publication History
Received: 03 September 2024
Accepted: 19 September 2024
Article published online:
22 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Liao X, Stanley LM, Hartwig JF. J. Am. Chem. Soc. 2011; 133: 2088
- 2 Brown TJ, Walsh RJ. A. J. Med. Chem. 1993; 1604
- 3 Zhang X, Wall M, Sui Z, Kauffman J, Hou C, Chen C, Du F, Kirchner T, Liang Y, Johnson DL, Murray WV, Demarest K. ACS Med. Chem. Lett. 2017; 8: 560
- 4 Boy KM, Guernon JM, Zuev DS, Xu L, Zhang Y, Shi J, Marcin LR, Higgins MA, Wu Y.-J, Krishnananthan S, Li J, Trehan A, Smith D, Toyn JH, Meredith JE, Burton CR, Kimura SR, Zvyaga T, Zhuo X, Lentz KA, Grace JE, Denton R, Morrison JS, Mathur A, Albright CF, Ahlijanian MK, Olson RE, Thompson LA, Macor JE. ACS Med. Chem. Lett. 2019; 10: 312
- 5 Lübbers T, Flohr A, Jolidon S, David-Pierson P, Jacobsen H, Ozmen L, Baumann K. Bioorg. Med. Chem. Lett. 2011; 21: 6554
- 6 Modulators for amyloid beta: Baumann K, Flohr A, Goetschi E, Jacobsen H, Jolidon S, Luebbers T. US2009/181965 A1, 2009
- 7 Oehlrich D, Berthelot DJ.-C, Gijsen HJ. M. J. Med. Chem. 2011; 54: 669
- 8 Malone JA, Toussel CE, Fronczek FR, Kartika R. Org. Lett. 2019; 21: 3610
- 9 Connolly PJ, Westin PJ, Loughney CD, Minor DA, Minor KL. J. Med. Chem. 1993; 36: 3674
- 10 Therrien E, Larouche G, Nguyen N, Rahil J, Lemieux A.-M, Li Z, Fournel M, Yan TP, Landry A.-J, Lefebvre S, Wang JJ, MacBeth K, Heise C, Nguyen A, Besterman JM, Déziel R, Wahhab A. Bioorg. Med. Chem. Lett. 2015; 25: 2514
- 11 Matthews JM, McNally JJ, Connolly PJ, Xia M, Zhu B, Black S, Chen C, Hou C, Liang Y, Tang Y, Macielag MJ. Bioorg. Med. Chem. Lett. 2016; 26: 5346
- 12 Hirano K, Urban S, Wang C, Glorius F. Org. Lett. 2009; 11: 1019
- 13 Zheng M, Huang L, Huang H, Li X, Wu W, Jiang H. Org. Lett. 2014; 16: 5906
- 14 Badmus FO, Malone JA, Fronczek FR, Kartika R. Chem. Commun. 2020; 56: 5034
- 15 Duval E, Case A, Stein RL, Cuny GD. Bioorg. Med. Chem. Lett. 2005; 15: 1885
- 16 Kranz M, Wall M, Evans B, Miah A, Ballantine S, Delves C, Dombroski B, Gross J, Schneck J, Villa JP, Neu M, Somers DO. S. Bioorg. Med. Chem. 2009; 17: 5336
- 17 Fang F, Xia J, Quan S, Chen S, Deng G.-J. J. Org. Chem. 2023; 88: 14697
- 18 Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 1999; 121: 1473
- 19 Fox JM, Huang X, Chieffi A, Buchwald SL. J. Am. Chem. Soc. 2000; 122: 1360
- 20 Biscoe MR, Buchwald SL. Org. Lett. 2009; 11: 1773
- 21 Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
- 22 Ge S, Arlow SI, Mormino MG, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 14401
- 23 Ge S, Chaładaj W, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4149
- 24 Cao C, Wang L, Cai Z, Zhang L, Guo J, Pang G, Shi Y. Eur. J. Org. Chem. 2011; 1570
- 25 Ackermann L, Mehta VP. Chem. Eur. J. 2012; 18: 10230
- 26 Alsabeh PG, Stradiotto M. Angew. Chem. Int. Ed. 2013; 52: 7242
- 27 Hu X.-Q, Lichte D, Rodstein I, Weber P, Seitz A.-K, Scherpf T, Gessner VH, Gooßen LJ. Org. Lett. 2019; 21: 7558
- 28 Churruca F, SanMartin R, Tellitu I, Domínguez E. Tetrahedron 2006; 47: 3233
- 29 Viciu MS, Germaneau RF, Nolan SP. Org. Lett. 2002; 4: 4053
- 30 Wood AB, Roa DE, Gallou F, Lipshutz BL. Green Chem. 2021; 23: 4858
- 31 Ge S, Hartwig JF. J. Am. Chem. Soc. 2011; 133: 16330
- 32 Quillen A, Nguyen Q, Neiser M, Lindsay K, Rosen A, Ramirez S, Costan S, Johnson N, Do TD, Rodriguez O, Rivera D, Atesin A, Ateşin TA, Ma L. J. Org. Chem. 2019; 84: 7652
- 33 Johannes JW, Almeida L, Barlaam B, Boriack-Sjodin PA, Casella R, Croft RA, Dishington AP, Gingipalli L, Gu C, Hawkins JL, Holmes JL, Howard T, Huang J, Ioannidis S, Kazmirski S, Lamb ML, McGuire TM, Moore JE, Ogg D, Patel A, Pike KG, Pontz T, Robb GR, Su N, Wang H, Wu X, Zhang HJ, Zhang Y, Zheng X, Wang T. ACS Med. Chem. Lett. 2015; 6: 254
- 34 Compounds for targeted degradation of RET: Henderson JA, Nasveschuk CG, Lazarski K, Garza V, Moustakim M, Ahn JY, Veits GK, O’Shea MW, Michael RE, Yap JL, Liang Y, Good AC, Fitzgerald ME, Yu RT. WO2022/32026 A1, 2022
- 35 Bian H.-L, Tang S.-Z, Chen M.-E, Zhang X.-M, Lv J.-W, Chen X.-W, Qi F.-M, Chen S.-W, Zhang F.-M. Org. Lett. 2020; 22: 5314
- 36 Yang X, Phipps RJ, Toste FD. J. Am. Chem. Soc. 2014; 136: 5225
- 37 Kwiatkowski J, Liu B, Pang S, Ahmad NH. B, Wang G, Poulsen A, Yang H, Poh YR, Tee DH. Y, Ong E, Retna P, Dinie N, Kwek P, Wee JL. K, Manoharan V, Low CB, Seah PG, Pendharkar V, Sangthongpitag K, Joy J, Baburajendran N, Jansson AE, Nacro K, Hill J, Keller TH, Hung AW. J. Med. Chem. 2020; 63: 621