Subscribe to RSS
DOI: 10.1055/s-0040-1720150
Synthetic Organic Chemistry of α-Imino Ketones: A Graphical Review
Abstract
α-Imino ketones are traditionally synthesized through condensing simple and readily available α-keto aldehydes or 1,2-diketones with primary or secondary amines. They are structurally similar to many naturally occurring biological substances due to the presence of the imino group (–N=C–). Chemically, C-acylimines exhibit ambiphilic reactivity, making their synthetic chemistry particularly attractive and viable for the creation of various aza-cyclic and heterocyclic compounds, including their asymmetric counterparts. Consequently, numerous synthetic strategies have been developed starting from these building blocks. Herein, we provide a graphical review of state-of-the-art synthetic efforts over the past 20 years, focusing on the use of α-imino ketones (both cyclic and acyclic) for the synthesis of small molecules and complex systems.
Key words
α-imino ketones - C-acylimines - ambiphilic reactivity - cycloadditions - annulations - asymmetric synthesisPublication History
Received: 08 August 2024
Accepted after revision: 18 October 2024
Article published online:
06 November 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Takashima R, Tsunekawa K, Shinozaki M, Suzuki Y. Tetrahedron 2018; 74: 2261
- 2 Payette JN, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 12276
- 3a Mloston G, Obijalska E, Heimgartner H. J. Fluorine Chem. 2011; 132: 951
- 3b Obijalska E, Utecht G, Kowalski MK, Mloston G, Rachwalski M. Tetrahedron Lett. 2015; 56: 4701
- 4a Hu P, Wang Q, Yan YZ, Zhang S, Zhang BQ, Wang ZY. Org. Biomol. Chem. 2013; 11: 4304
- 4b Li L, Zhang S, Deng X, Li G, Tang Z, Zhao G. Org. Lett. 2021; 23: 6819
- 4c Rueping M, Raja S. Beilstein J. Org. Chem. 2012; 8: 1819
- 4d Zhao P, Wu X, Zhou Y, Geng X, Wang C, Wu YD, Wu AX. Org. Lett. 2019; 21: 2708
- 4e Yamashita M, Nishizono Y, Himekawa S, Iida A. Tetrahedron 2016; 72: 4123
- 4f Mohinuddin PM. K, Dada R, Almansour AI, Arumugam N, Yaragorla S. Tetrahedron Lett. 2019; 60: 1043
- 4g Zhao Q, Li Y, Zhang QX, Cheng JP, Li X. Angew. Chem. Int. Ed. 2021; 60: 17608
- 4h Yuan X, Wu X, Zhang P, Peng F, Liu C, Yang H, Zhu C, Fu H. Org. Lett. 2019; 21: 2498
- 4i Liu JX, Zhou QQ, Deng JG, Chen YC. Org. Biomol. Chem. 2013; 11: 8175
- 4j Llabrés S, García EV, Preciado S, Guiu C, Pouplana R, Lavilla R, Luque F. Chem. Eur. J. 2013; 19: 13355
- 5a Vannada J, Sulthan M, Arun D, Dada R, Yaragorla S. J. Org. Chem. 2020; 85: 6697
- 5b Dada R, Sulthan M, Yaragorla S. Org. Lett. 2020; 22: 279
- 5c Xu J, Hu S, Lu Y, Dong Y, Tang W, Lu T, Du D. Adv. Synth. Catal. 2015; 357: 923
- 5d Kondoh A, Terada M. Chem. Eur. J. 2021; 27: 585
- 5e Preciado S, García EV, Llabrés S, Luque FJ, Lavilla R. Angew. Chem. Int. Ed. 2012; 51: 6874 ; Angew. Chem., 2012, 124, 6980
- 5f Dhote PS, Ramana CV. Org. Lett. 2019; 21: 6221
- 5g Xie L, Li Y, Dong S, Feng X, Liu X. Chem. Commun. 2021; 57: 239
- 5h Fang S, Jin S, Ma R, Lu T, Du D. Org. Lett. 2019; 21: 5211
- 6a Rajesh P, Almansour AI, Arumugam N, Yaragorla S. Org. Biomol. Chem. 2021; 19: 1060
- 6b Bhuyan PJ, Johnson JM, Williams AM. J. Org. Chem. 2015; 80: 6381
- 6c Ma R, Zhao LJ, Chen HR. Beilstein J. Org. Chem. 2020; 16: 638
- 6d Wu X, Liu JH, Zhang MZ. Chem. Commun. 2019; 55: 10623
- 6e Wu X, Wang XG, Zhao RK. J. Org. Chem. 2017; 82: 13671
- 6f Li P, Sheng R, Zhou Z, Hu G, Zhang X. Eur. J. Org. Chem. 2020; 2146
- 6g Cahard D, Lee BL, Wang RK. Chem. Commun. 2012; 48: 9471
- 6h Sinyashin OG, Melikhov MP, Mamedov VA. J. Org. Chem. 2020; 85: 9887
- 6i Yu X.-X, Zhao P, Zhou Y, Huang C, Wang L.-S, Wu Y.-D, Wu A.-X. J. Org. Chem. 2021; 86: 8381
- 7a Berti C, Greci L, Marchetti L. J. Chem. Soc., Perkin Trans. 2 1979; 233
- 7b Li J.-S, Liu Y.-J, Zhang G.-W, Ma J.-A. Org. Lett. 2017; 19: 6364
- 7c Xu H, Ye M, Yang K, Song Q. Org. Lett. 2021; 23: 7776
- 7d Liu RR, Ye SC, Lu CJ, Zhuang GL, Gao JR, Jia YX. Angew. Chem. Int. Ed. 2015; 54: 11205
- 7e Bott TM, Atienza BJ, West FG. RSC Adv. 2014; 4: 31955
- 7f Atienza BJ. P, Jensen LD, Noton SL, Ansalem AK. V, Hobman T, Fearns R, Marchan DJ, West FG. J. Org. Chem. 2018; 83: 6829
- 7g Zhu J, Fang S, Sun K, Fang C, Lu T, Du D. J. Org. Chem. 2018; 83: 10430
- 7h Li J.-S, Liu Y.-J, Li S, Ma J.-A. Chem. Commun. 2018; 54: 9151
- 8a Li P, Yong W, Sheng R, Rao W, Zhu X, Zhang X. Adv. Synth. Catal. 2019; 361: 201
- 8b Meltzer PC, Butler D, Deschamps JR, Madras BK. J. Med. Chem. 2006; 49: 1420
- 8c Sun L.-H, Liang Z.-Q, Jia W.-Q, Ye S. Angew. Chem. Int. Ed. 2013; 52: 5803
- 8d Lin Z, Qian J, Lu P, Wang Y. J. Org. Chem. 2020; 85: 11766
- 8e Yaragorla S, Doma D, Tangellapally T. Synthesis 2023; 55: 1298
- 8f Gronbach LM, Voss A, Frahm M, Villinger A, Bresien J, Michalik D, Brasholz M. Org. Lett. 2021; 23: 7834
- 8g Obijalska E, Mloston G, Linden A, Heimgartner H. Helv. Chim. Acta 2010; 93: 1725
- 8h Künzi SA, Morandi B, Carreira EM. Org. Lett. 2012; 14: 1900
- 8i Rao YS, Arun D, Devunuri N, Yaragorla S. Eur. J. Org. Chem. 2024; 27: e202400178