Subscribe to RSS
DOI: 10.1055/s-0040-1720150
Synthetic Organic Chemistry of α-Imino Ketones: A Graphical Review
Abstract
α-Imino ketones are traditionally synthesized through condensing simple and readily available α-keto aldehydes or 1,2-diketones with primary or secondary amines. They are structurally similar to many naturally occurring biological substances due to the presence of the imino group (–N=C–). Chemically, C-acylimines exhibit ambiphilic reactivity, making their synthetic chemistry particularly attractive and viable for the creation of various aza-cyclic and heterocyclic compounds, including their asymmetric counterparts. Consequently, numerous synthetic strategies have been developed starting from these building blocks. Herein, we provide a graphical review of state-of-the-art synthetic efforts over the past 20 years, focusing on the use of α-imino ketones (both cyclic and acyclic) for the synthesis of small molecules and complex systems.
#
Key words
α-imino ketones - C-acylimines - ambiphilic reactivity - cycloadditions - annulations - asymmetric synthesisBiographical Sketches
Abhishek Pareek was born in Badayali, a village in the Nagaur District of Rajasthan, India. He completed his master’s degree at Jai Narain Vyas University in Jodhpur, after which he pursued his Ph.D. at the Central University of Rajasthan under the mentorship of Prof. Srinivasarao Yaragorla. He subsequently moved to the University of Warsaw in Poland, where he worked as a postdoctoral fellow on the Morita–Baylis–Hillman (MBH) reaction with Dr. Marcin Kalek. Currently, he is continuing his research at the Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, under the supervision of Dr. Przemyslaw Gawel, focusing on the synthesis of novel optoelectronic materials.
Srinivasarao Yaragorla was born in the village of Sitharamapuram in Telangana state, India. He obtained his master’s degree (M.Sc.) in chemistry from the University of Hyderabad and his Ph.D. (2008) from the Indian Institute of Chemical Technology (IICT), Hyderabad. He subsequently undertook postdoctoral studies at the University of Minnesota, USA, and the University of Hyderabad. He then started his independent research career as an assistant professor at the Central University of Rajasthan. Currently, he is a full professor at the University of Hyderabad. His research interests are focused on the cyclizative functionalization of alkynols via allenes, C–H functionalization, multicomponent reactions of α-imino ketones, the Heyns rearrangement and mechanochemistry.
Sustainable synthesis is one of the key concerns for synthetic organic chemists. Amongst several factors, initiating chemical synthesis from readily available and inexpensive starting materials through one-pot, multicomponent approaches contribute significantly to sustainable synthesis. Such reactions are particularly important in the chemical industry because they facilitate scale-up and large-scale synthesis with relative ease. α-Imino ketones, also known as C-acylimines, are key building blocks in organic synthesis.
Traditionally, α-imino ketones are synthesized from inexpensive α-keto aldehydes or 1,2-diketones and amines through removal of water via simple mixing under various conditions. Additionally, several other methods have been developed, such as NHC-catalyzed aroylation of aromatic aldehydes with imidoyl chlorides[1] and nitrosobenzene-mediated carbon–carbon bond cleavage using LHMDS.[2] However, in this graphical review, we will focus on the synthetic applications of α-imino ketones rather than their synthesis. It is worth noting that the structure of α-imino ketones resemble those of certain natural biological substances due to the presence of the imino group (–C=N–), which allows these substrates to be converted into biologically relevant β-amino alcohols in a one-pot process.[3] The structure of α-imino ketones includes both imine and ketone functionalities in conjugation, resembling a conjugated ketone where the β-carbon of a 1,4-enone is replaced with nitrogen in α-imino ketones. This modification results in completely different reactivity for C-acylimines; while 1,4-enones can undergo both 1,2-addition and 1,4-conjugate addition depending on the reaction conditions, C-acylimines cannot participate in conjugate addition, though direct 1,2-addition is possible. More intriguingly, the α-carbon in these substrates demonstrates umpolung reactivity. Thus, they exhibit ambiphilic reactivity, with the two heteroatoms (oxygen and nitrogen) displaying nucleophilic characteristics and the two carbons (the carbonyl carbon and the imine carbon) showing electrophilic properties. Due to these unique reactivity patterns, numerous synthetic groups have utilized α-imino ketones as key precursors for constructing aza-(hetero)cyclic compounds.
#
Conflict of Interest
The authors declare no conflict of interest.
-
References
- 1 Takashima R, Tsunekawa K, Shinozaki M, Suzuki Y. Tetrahedron 2018; 74: 2261
- 2 Payette JN, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 12276
- 3a Mloston G, Obijalska E, Heimgartner H. J. Fluorine Chem. 2011; 132: 951
- 3b Obijalska E, Utecht G, Kowalski MK, Mloston G, Rachwalski M. Tetrahedron Lett. 2015; 56: 4701
- 4a Hu P, Wang Q, Yan YZ, Zhang S, Zhang BQ, Wang ZY. Org. Biomol. Chem. 2013; 11: 4304
- 4b Li L, Zhang S, Deng X, Li G, Tang Z, Zhao G. Org. Lett. 2021; 23: 6819
- 4c Rueping M, Raja S. Beilstein J. Org. Chem. 2012; 8: 1819
- 4d Zhao P, Wu X, Zhou Y, Geng X, Wang C, Wu YD, Wu AX. Org. Lett. 2019; 21: 2708
- 4e Yamashita M, Nishizono Y, Himekawa S, Iida A. Tetrahedron 2016; 72: 4123
- 4f Mohinuddin PM. K, Dada R, Almansour AI, Arumugam N, Yaragorla S. Tetrahedron Lett. 2019; 60: 1043
- 4g Zhao Q, Li Y, Zhang QX, Cheng JP, Li X. Angew. Chem. Int. Ed. 2021; 60: 17608
- 4h Yuan X, Wu X, Zhang P, Peng F, Liu C, Yang H, Zhu C, Fu H. Org. Lett. 2019; 21: 2498
- 4i Liu JX, Zhou QQ, Deng JG, Chen YC. Org. Biomol. Chem. 2013; 11: 8175
- 4j Llabrés S, García EV, Preciado S, Guiu C, Pouplana R, Lavilla R, Luque F. Chem. Eur. J. 2013; 19: 13355
- 5a Vannada J, Sulthan M, Arun D, Dada R, Yaragorla S. J. Org. Chem. 2020; 85: 6697
- 5b Dada R, Sulthan M, Yaragorla S. Org. Lett. 2020; 22: 279
- 5c Xu J, Hu S, Lu Y, Dong Y, Tang W, Lu T, Du D. Adv. Synth. Catal. 2015; 357: 923
- 5d Kondoh A, Terada M. Chem. Eur. J. 2021; 27: 585
- 5e Preciado S, García EV, Llabrés S, Luque FJ, Lavilla R. Angew. Chem. Int. Ed. 2012; 51: 6874 ; Angew. Chem., 2012, 124, 6980
- 5f Dhote PS, Ramana CV. Org. Lett. 2019; 21: 6221
- 5g Xie L, Li Y, Dong S, Feng X, Liu X. Chem. Commun. 2021; 57: 239
- 5h Fang S, Jin S, Ma R, Lu T, Du D. Org. Lett. 2019; 21: 5211
- 6a Rajesh P, Almansour AI, Arumugam N, Yaragorla S. Org. Biomol. Chem. 2021; 19: 1060
- 6b Bhuyan PJ, Johnson JM, Williams AM. J. Org. Chem. 2015; 80: 6381
- 6c Ma R, Zhao LJ, Chen HR. Beilstein J. Org. Chem. 2020; 16: 638
- 6d Wu X, Liu JH, Zhang MZ. Chem. Commun. 2019; 55: 10623
- 6e Wu X, Wang XG, Zhao RK. J. Org. Chem. 2017; 82: 13671
- 6f Li P, Sheng R, Zhou Z, Hu G, Zhang X. Eur. J. Org. Chem. 2020; 2146
- 6g Cahard D, Lee BL, Wang RK. Chem. Commun. 2012; 48: 9471
- 6h Sinyashin OG, Melikhov MP, Mamedov VA. J. Org. Chem. 2020; 85: 9887
- 6i Yu X.-X, Zhao P, Zhou Y, Huang C, Wang L.-S, Wu Y.-D, Wu A.-X. J. Org. Chem. 2021; 86: 8381
- 7a Berti C, Greci L, Marchetti L. J. Chem. Soc., Perkin Trans. 2 1979; 233
- 7b Li J.-S, Liu Y.-J, Zhang G.-W, Ma J.-A. Org. Lett. 2017; 19: 6364
- 7c Xu H, Ye M, Yang K, Song Q. Org. Lett. 2021; 23: 7776
- 7d Liu RR, Ye SC, Lu CJ, Zhuang GL, Gao JR, Jia YX. Angew. Chem. Int. Ed. 2015; 54: 11205
- 7e Bott TM, Atienza BJ, West FG. RSC Adv. 2014; 4: 31955
- 7f Atienza BJ. P, Jensen LD, Noton SL, Ansalem AK. V, Hobman T, Fearns R, Marchan DJ, West FG. J. Org. Chem. 2018; 83: 6829
- 7g Zhu J, Fang S, Sun K, Fang C, Lu T, Du D. J. Org. Chem. 2018; 83: 10430
- 7h Li J.-S, Liu Y.-J, Li S, Ma J.-A. Chem. Commun. 2018; 54: 9151
- 8a Li P, Yong W, Sheng R, Rao W, Zhu X, Zhang X. Adv. Synth. Catal. 2019; 361: 201
- 8b Meltzer PC, Butler D, Deschamps JR, Madras BK. J. Med. Chem. 2006; 49: 1420
- 8c Sun L.-H, Liang Z.-Q, Jia W.-Q, Ye S. Angew. Chem. Int. Ed. 2013; 52: 5803
- 8d Lin Z, Qian J, Lu P, Wang Y. J. Org. Chem. 2020; 85: 11766
- 8e Yaragorla S, Doma D, Tangellapally T. Synthesis 2023; 55: 1298
- 8f Gronbach LM, Voss A, Frahm M, Villinger A, Bresien J, Michalik D, Brasholz M. Org. Lett. 2021; 23: 7834
- 8g Obijalska E, Mloston G, Linden A, Heimgartner H. Helv. Chim. Acta 2010; 93: 1725
- 8h Künzi SA, Morandi B, Carreira EM. Org. Lett. 2012; 14: 1900
- 8i Rao YS, Arun D, Devunuri N, Yaragorla S. Eur. J. Org. Chem. 2024; 27: e202400178
Corresponding Author
Publication History
Received: 08 August 2024
Accepted after revision: 18 October 2024
Article published online:
06 November 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Takashima R, Tsunekawa K, Shinozaki M, Suzuki Y. Tetrahedron 2018; 74: 2261
- 2 Payette JN, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 12276
- 3a Mloston G, Obijalska E, Heimgartner H. J. Fluorine Chem. 2011; 132: 951
- 3b Obijalska E, Utecht G, Kowalski MK, Mloston G, Rachwalski M. Tetrahedron Lett. 2015; 56: 4701
- 4a Hu P, Wang Q, Yan YZ, Zhang S, Zhang BQ, Wang ZY. Org. Biomol. Chem. 2013; 11: 4304
- 4b Li L, Zhang S, Deng X, Li G, Tang Z, Zhao G. Org. Lett. 2021; 23: 6819
- 4c Rueping M, Raja S. Beilstein J. Org. Chem. 2012; 8: 1819
- 4d Zhao P, Wu X, Zhou Y, Geng X, Wang C, Wu YD, Wu AX. Org. Lett. 2019; 21: 2708
- 4e Yamashita M, Nishizono Y, Himekawa S, Iida A. Tetrahedron 2016; 72: 4123
- 4f Mohinuddin PM. K, Dada R, Almansour AI, Arumugam N, Yaragorla S. Tetrahedron Lett. 2019; 60: 1043
- 4g Zhao Q, Li Y, Zhang QX, Cheng JP, Li X. Angew. Chem. Int. Ed. 2021; 60: 17608
- 4h Yuan X, Wu X, Zhang P, Peng F, Liu C, Yang H, Zhu C, Fu H. Org. Lett. 2019; 21: 2498
- 4i Liu JX, Zhou QQ, Deng JG, Chen YC. Org. Biomol. Chem. 2013; 11: 8175
- 4j Llabrés S, García EV, Preciado S, Guiu C, Pouplana R, Lavilla R, Luque F. Chem. Eur. J. 2013; 19: 13355
- 5a Vannada J, Sulthan M, Arun D, Dada R, Yaragorla S. J. Org. Chem. 2020; 85: 6697
- 5b Dada R, Sulthan M, Yaragorla S. Org. Lett. 2020; 22: 279
- 5c Xu J, Hu S, Lu Y, Dong Y, Tang W, Lu T, Du D. Adv. Synth. Catal. 2015; 357: 923
- 5d Kondoh A, Terada M. Chem. Eur. J. 2021; 27: 585
- 5e Preciado S, García EV, Llabrés S, Luque FJ, Lavilla R. Angew. Chem. Int. Ed. 2012; 51: 6874 ; Angew. Chem., 2012, 124, 6980
- 5f Dhote PS, Ramana CV. Org. Lett. 2019; 21: 6221
- 5g Xie L, Li Y, Dong S, Feng X, Liu X. Chem. Commun. 2021; 57: 239
- 5h Fang S, Jin S, Ma R, Lu T, Du D. Org. Lett. 2019; 21: 5211
- 6a Rajesh P, Almansour AI, Arumugam N, Yaragorla S. Org. Biomol. Chem. 2021; 19: 1060
- 6b Bhuyan PJ, Johnson JM, Williams AM. J. Org. Chem. 2015; 80: 6381
- 6c Ma R, Zhao LJ, Chen HR. Beilstein J. Org. Chem. 2020; 16: 638
- 6d Wu X, Liu JH, Zhang MZ. Chem. Commun. 2019; 55: 10623
- 6e Wu X, Wang XG, Zhao RK. J. Org. Chem. 2017; 82: 13671
- 6f Li P, Sheng R, Zhou Z, Hu G, Zhang X. Eur. J. Org. Chem. 2020; 2146
- 6g Cahard D, Lee BL, Wang RK. Chem. Commun. 2012; 48: 9471
- 6h Sinyashin OG, Melikhov MP, Mamedov VA. J. Org. Chem. 2020; 85: 9887
- 6i Yu X.-X, Zhao P, Zhou Y, Huang C, Wang L.-S, Wu Y.-D, Wu A.-X. J. Org. Chem. 2021; 86: 8381
- 7a Berti C, Greci L, Marchetti L. J. Chem. Soc., Perkin Trans. 2 1979; 233
- 7b Li J.-S, Liu Y.-J, Zhang G.-W, Ma J.-A. Org. Lett. 2017; 19: 6364
- 7c Xu H, Ye M, Yang K, Song Q. Org. Lett. 2021; 23: 7776
- 7d Liu RR, Ye SC, Lu CJ, Zhuang GL, Gao JR, Jia YX. Angew. Chem. Int. Ed. 2015; 54: 11205
- 7e Bott TM, Atienza BJ, West FG. RSC Adv. 2014; 4: 31955
- 7f Atienza BJ. P, Jensen LD, Noton SL, Ansalem AK. V, Hobman T, Fearns R, Marchan DJ, West FG. J. Org. Chem. 2018; 83: 6829
- 7g Zhu J, Fang S, Sun K, Fang C, Lu T, Du D. J. Org. Chem. 2018; 83: 10430
- 7h Li J.-S, Liu Y.-J, Li S, Ma J.-A. Chem. Commun. 2018; 54: 9151
- 8a Li P, Yong W, Sheng R, Rao W, Zhu X, Zhang X. Adv. Synth. Catal. 2019; 361: 201
- 8b Meltzer PC, Butler D, Deschamps JR, Madras BK. J. Med. Chem. 2006; 49: 1420
- 8c Sun L.-H, Liang Z.-Q, Jia W.-Q, Ye S. Angew. Chem. Int. Ed. 2013; 52: 5803
- 8d Lin Z, Qian J, Lu P, Wang Y. J. Org. Chem. 2020; 85: 11766
- 8e Yaragorla S, Doma D, Tangellapally T. Synthesis 2023; 55: 1298
- 8f Gronbach LM, Voss A, Frahm M, Villinger A, Bresien J, Michalik D, Brasholz M. Org. Lett. 2021; 23: 7834
- 8g Obijalska E, Mloston G, Linden A, Heimgartner H. Helv. Chim. Acta 2010; 93: 1725
- 8h Künzi SA, Morandi B, Carreira EM. Org. Lett. 2012; 14: 1900
- 8i Rao YS, Arun D, Devunuri N, Yaragorla S. Eur. J. Org. Chem. 2024; 27: e202400178