Subscribe to RSS
DOI: 10.1055/s-0040-1720891
[1,3]-Dithiolo-[4,5-d][1,3-dithiole]-2,5-dione
Financial support of this project by the ESRF is gratefully acknowledged.
Abstract
A safe, three-step reaction sequence to [1,3]-dithiolo-[4,5-d][1,3-dithiole]-2,5-dione starting from carbon disulfide is presented. Optimized reaction conditions, rigorous purification, and full characterization of all intermediates provide reproducibly a final product of superior quality with a melting point of 181 °C (dec.).
Key words
1,3,4,6-tetrathiapentalene-2,5-dione - thiapendione - 1,1,2,2-tetrathioethene - thermoelectricity - 2-oxo-1,3-dithiole-4,5-dithiolate - dmidSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720891.
- Supporting Information
Publication History
Received: 28 July 2021
Accepted after revision: 31 August 2021
Article published online:
20 October 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Mizuno A, Garito A, Cava MP. J. Chem. Soc., Chem. Commun. 1978; 18
- 2 For a recent review, see: Wosnitza J. J. Low Temp. Phys. 2019; 197: 250
- 4 Misaki Y. Sci. Technol. Adv. Mater. 2009; 10: 2
- 5a Müller H, Salhi F, Divisia-Blohorn B. Tetrahedron Lett. 1997; 38: 3215
- 5b Müller H, Salhi F, Divisia-Blohorn B, Genoud F, Narayanan T, Lorenzen M, Ferrero C. Chem. Commun 1999; 1407
- 5c Hapiot P, Salhi F, Divisia-Blohorn B, Müller H. J. Phys. Chem. A 1999; 103: 11221
- 6 Boyd DA, Nguyen VQ, McClain CC, Kung FH, Baker CC, Myers JD, Hunt MP, Kim W, Sanghera JS. ACS Macro Lett. 2019; 8: 113
- 7a Poleschner H, John W, Kempe G, Hoyer E, Fanghänel E. Z. Chem. 1978; 345
- 7b Poleschner H, John W, Hoppe F, Fanghänel E. J. Prakt. Chem. 1983; 325: 957
- 8a Vicente R, Ribas J, Cassoux P, Valade L. Synth. Met. 1986; 13: 265
- 8b Olk RM. W, Dietzsch W, Köhler K, Kirmse R, Reinhold J, Hoyer E, Golic L, Olk B. Z. Anorg. Allg. Chem. 1988; 567: 131
- 8c Müller H, Puig Molina AP, Narymbetov BZh, Zorina LV, Khasanov SS, Shibaeva RP. Z. Anorg. Allg. Chem. 1998; 624: 1492
- 9 Xenikos DG, Müller H, Jouan C, Sulpice A, Tholence JL. Solid State Commun. 1997; 102: 681
- 10a Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu DB. Adv. Mater. 2012; 24: 932
- 10b Sun Y, Qiu L, Tang L, Wang HG. H, Zhang F, Xu DH. W, Yue P, Guan Y, Jiao F, Sun Y, Tang D, Di C, Yi Y, Zhu DB. Adv. Mater. 2016; 28: 3351
- 10c Menon AK, Wolfe RM. W, Kommandur S, Yee SK. Adv. Funct. Mater. 2018; 1801620
- 10d Toshima N, Oshima K, Shiraishi Y. In New Polymeric Materials Based on Element Blocks . Chujo Y. Springer; Singapore: 2019
- 11 Menon AK, Wolfe RM. W, Kommandur S, Yee SK. Adv. Electron. Mater. 2019; 1800884
- 12 Falsig M, Lund H. Acta Chem. Scand., Ser. B 1980; 34: 591
- 13 Ouyang J, Yakushi K, Kinoshita T, Nanbu N, Aoyagi M, Misaki Y, Tanaka K. Spectrochim. Acta. Part A 2002; 58: 1643
- 14 Müller H, Averbuch M.-T. Acta Crysttallogr., Ser. C 1998; 55: 590
- 15 Kartsovnik MV, Zverev VN, Andres D, Biberacher W, Helm T, Grigoriev PD, Ramazashvili R, Kushch ND, Müller H. Low Temp. Phys. 2014; 40: 484
- 16 Müller H, Ueba Y. (Sumitomo Electric Industries, Ltd.) EU Patent 0570927, 2003
- 17 Schumaker RR, Engler EM. J. Am. Chem. Soc. 1977; 99: 5521
- 18 Schumaker RR, Lee VY, Engler EM. J. Org. Chem. 1984; 49: 565
- 19 Krug WP, Bloch AN, Cowan DO. J. Chem. Soc., Chem. Commun. 1977; 660
- 20 Fetkenheuer B, Fetkenheuer H, Lecus B. Ber. Dtsch. Chem. Ges. 1927; 60: 2528
- 21a Wawzonek S, Heilmann SM. J. Org. Chem. 1974; 39: 511
- 21b Bontempelli G, Magno F, Mazzochin G.-A, Seeber R. J. Electroanal. Chem. 1975; 63: 231
- 22a Steimecke G, Kirmse R, Hoyer E. Z. Chem. 1975; 15: 28
- 22b Steimecke G, Sieler H.-J, Kirmse R, Hoyer E. Phosphorus Sulfur 1979; 7: 49
- 23a Hartke K, Kissel Th, Quante J, Matusch R. Chem. Ber. 1980; 113: 1898
- 23b Varma KS, Bury A, Harris NJ, Underhill AE. Synthesis 1987; 837
- 23c Reed PE, Braam JM, Sowa LM, Barkhau RA, Blackman GS, Cox DD, Ball GA, Wang HH, Williams JM. Inorg. Synth. 1989; 26: 386
- 23d Hansen TK, Becher J, Jørgensen T, Varma KS, Khedekar R, Cava MP. Org. Synth. 1996; 73: 270
- 23e Hansen TK, Becher J, Jørgensen T, Varma KS, Khedekar R, Cava MP. Org. Synth. Coll. Vol. IX 1998; 203
- 23f Wang C, Batsanov AS, Bryce MR, Howard JA. K. Synthesis 1998; 1615
- 24 Moradpour A, Schumaker RR. J. Chem. Educ. 1986; 63: 1016
- 25a Steimecke G, Sieler H.-J, Kirmse R, Dietzsch W, Hoyer E. Phosphorus Sulfur 1982; 12: 237
- 25b Beck J, Daniels J, Roloff A, Wagner N. Dalton Trans. 2006; 1174
- 25c Even though reaction rates are appreciable only at elevated temperatures, a thermal transformation at lower temperatures cannot be excluded and may be another source of impurities. Solid state properties of synthetic metals are extremely susceptible to the presence of impurities at levels far below the detection limit of classical elemental analyses.26
- 26 Müller H, Heidmann C.-P, Kellner D, Biberacher W, Andres K. Synth. Met. 1990; 39: 261
- 27 Liu SG, Wu PJ, Liu YQ, Zhu D.-B. Chin. Chem. Lett. 1995; 6: 363
- 28 Schauenstein E, Treiber E. Melliand Textilber. 1951; XXXII: 44
- 29 Whitmore WF, Lieber ED. Ind. Eng. Chem. 1935; 7: 127
- 30a Frank D, Nieger M, Friedmann C, Lahann J, Bräse S. Isr. J. Chem. 2012; 52: 143
- 30b Zonta C, De Lucchi O, Volpicelli R, Cotarca L. Top. Curr. Chem. 2007; 275: 131
- 31 Bhattacharya AK, Hortmann AG. J. Org. Chem. 1974; 39: 95
- 32 Müller H, Fritz HP, Nemetschek R, Hackl R, Biberacher W, Heidmann CP. Z. Naturforsch., B 1992; 47: 718
- 33 Rosenblum EI, Taylor WS. J. Pharm. Pharmacol. 1954; 6: 656