Klin Monbl Augenheilkd 2016; 233(02): 172-178
DOI: 10.1055/s-0041-109512
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Die Intraokularlinse als Arzneimittelträger: Stand der Forschung und Ausblick

Intraocular Lens as a Drug Delivery Device: State of the Art and Future Perspective
K. H. Eibl-Lindner
Augenklinik, Klinikum der Universität München
,
C. Wertheimer
Augenklinik, Klinikum der Universität München
,
A. Kampik
Augenklinik, Klinikum der Universität München
› Author Affiliations
Further Information

Publication History

eingereicht 22 September 2015

akzeptiert 10 November 2015

Publication Date:
15 February 2016 (online)

Zusammenfassung

Die Intraokularlinse (IOL) als Medikamententräger stellt ein therapeutisches Konzept mit großem Entwicklungspotenzial dar. Häufige Folgen der Kataraktchirurgie, wie der Nachstar oder schwerwiegende Komplikationen wie ein starker intraokularer Reizzustand oder die Endophthalmitis, könnten durch die Implantation einer pharmakologisch modifizierten Kunstlinse im Idealfall mitbehandelt bzw. in ihrer Ausprägung geschwächt werden, ohne weitere therapeutische Maßnahmen einzuleiten. Eine pharmakologische IOL-Modifikation kann an der Oberfläche erfolgen („IOL-coating“) oder als direkte Beladung des optischen Materials mit einem Arzneimittel („IOL-soaking“). Eine weitere Möglichkeit besteht in der Befestigung eines Medikamententrägers an der Haptik („IOL-haptic-modification“). Bei dieser Variante würde das Material der IOL-Optik unbeeinflusst bleiben. Zahlreiche therapeutische Ziele und Einsatzmöglichkeiten einer pharmakologisch modifizierten IOL sind denkbar. Deshalb müssen unterschiedliche pharmakologische Wirkstoffklassen zunächst in vitro und in vivo auf ihre Sicherheit und Wirksamkeit untersucht werden. Welche Wirkstoffe tatsächlich für eine IOL-Modifikation geeignet und wirksam sind, ist Gegenstand präklinischer und klinischer Studien. In diesem Artikel geben wir eine Übersicht über die bisherigen wissenschaftlichen Entwicklungen und befassen uns mit zukünftigen Einsatzmöglichkeiten einer pharmakologisch modifizierten Intraokularlinse in der Kataraktchirurgie, wie z. B. mit einer mit Erufosin beladenen IOL zur pharmakologischen Nachstarprophylaxe, einer mit Heparin beladenen IOL zur Linderung des intraokularen Reizzustands nach Kataraktoperation oder mit einer mit Cefuroxim beladenen IOL zur Endophthalmitisprophylaxe.

Abstract

Development of an intraocular lens (IOL) as a drug delivery device has been pursued for many years and is a promising concept in modern cataract surgery. Common postoperative conditions such as posterior capsule opacification (PCO), intraocular inflammation or the rare but severe complications of cataract surgery like endophthalmitis are potential therapeutic targets for a drug-eluting IOL. There are three techniques of pharmacological IOL modification: Firstly, surface modification of the IOL (“coating”); secondly, IOL optic modification (“soaking”) and lastly, loading the IOL haptics with a slow release system. The last option does not interfere with the IOL optics at all. Therefore, a broad spectrum of pharmacological agents needs to be assessed in preclinical and clinical studies to determine which agent/IOL combination is safe and efficient. For pharmacological PCO prophylaxis, erufosine-loaded IOLs are of great clinical interest. Heparin-coated IOLs might become clinically relevant for attenuation of intraocular inflammation after cataract surgery and cefuroxime-loaded IOLs for endophthalmitis prophylaxis.

 
  • Literatur

  • 1 Wenzel M, Auffarth G, Scharrer A et al. Ambulante und stationäre Intraokularchirurgie 2014: Ergebnisse der Umfrage von BDOC, BVA, DGII und DOG. Ophthalmo-Chirurgie 2015; 27: 155-166
  • 2 Apple DJ, Escobar-Gomez M, Zaugg B et al. Modern cataract surgery: unfinished business and unanswered questions. Surv Ophthalmol 2011; 56 (Suppl. 06) S3-S53
  • 3 Dick HB, Tehrani M, Brauweiler P et al. [Complications of foldable intraocular lenses requiring explantation. Results of the 2000 and 2001 survey in Germany]. Ophthalmologe 2003; 100: 465-470
  • 4 Jones JJ, Jones YJ, Jin GJ. Indications and outcome of intraocular lens exchage during a recent 5-year period. Am J Ophthalmol 2014; 157: 154-162
  • 5 Kaufmann HE, Katz JL. Pathology of the corneal endothelium. Invest Ophthalmol Vis Sci 1977; 16: 265-268
  • 6 Peyman GA, Zweig K. Dry coating of intraocular lenses with bovine submaxillary mucin. Am J Ophthalmol 1979; 87: 561-566
  • 7 Olson RJ, Koloder H, Morgan KS et al. Polyvinyl alcohol as a protective coating on intraocular lenses. Arch Ophthalmol 1980; 98: 1840-1842
  • 8 Bahn CF, Grosserode R, Musch DC et al. Effect of 1 % sodium hyaluronate (Healon) on a nonregenerating (feline) corneal endothelium. Invest Ophthalmol Vis Sci 1986; 27: 1485-1494
  • 9 Tehrani M, Dick HB, Wolters B et al. Material properties of various intraocular lenses in an experimental study. Ophthalmologica 2004; 218: 57-63
  • 10 Apple DJ, Federman JL, Krolicki TJ et al. Irreversible silicone oil adhesion to silicone intraocular lenses. A clinicopathologic analysis. Ophthalmology 1996; 103: 1555-1561
  • 11 Dick B, Schwenn O, Stoffelns B et al. [Adhesion of liquid perfluorocarbon to various intraocular lens materials. A light microscopy study]. Ophthalmologe 1998; 95: 301-306
  • 12 Weston K, Nicholson R, Bunce C et al. An 8-year retrospective study of cataract surgery and postoperative endophthalmitis: injectable intraocular lenses may reduce the incidence of postoperative endophthalmitis. Br J Ophthalmol 2015; 99: 1377-1380
  • 13 Cullin F, Busch T, Lundström M. Economic considerations related to choice of intraocular lens (IOL) and posterior capsule opacification frequency – a comparison of three different IOLs. Acta Ophthalmol 2014; 92: 179-183
  • 14 Tomlins PJ, Sivaraj RR, Rauz S et al. Long-term biocompatibility and visual outcomes of a hydrophilic acrylic intraocular lens in patients with uveitis. J Cataract Refract Surg 2014; 40: 618-625
  • 15 Findl O, Buehl W, Bauer P et al. Interventions for preventing posterior capsule opacification. Cochrane Database Syst Rev 2007; (3) CD003738
  • 16 Vock L, Crnej A, Findl O et al. Posterior capsule opacification in silicone and hydrophobis acrylic intraocular lenses with sharp-edge optics six years after surgery. Am J Ophthalmol 2009; 147: 683-690
  • 17 Leydolt C, Schriefl S, Stifter E et al. Posterior capsule opaicification with the iMics 1NY-60 and AycrySof SN60WF1-piece hydrophobic acrylic intraocular lenses: 3-year results of a randomized trial. Am J Ophthalmol 2013; 156: 375-381
  • 18 Leydolt C, Kriechbaum K, Schriefl S et al. Posterior capsule opaicification and neodymium : YAG rates with 2 single-piece hydrophobic acrylic intraokular lenses: three-year results. J Cataract Refract Surg 2013; 39: 1886-1892
  • 19 Schriefl SM, Menapace R, Stifter E et al. Posterior capsule opacification and neodymium : YAG laser capsulotomy rates with 2 microincision intraocular lenses: four-year results. J Cataract Refract Surg 2015; 41: 956-963
  • 20 Hirnschall N, Nishi Y, Crej A et al. Capsular bag stability and posterior capsule opacification of a plate-haptic design microincision cataract surgery intraocular lens: 3-year results of a randomised trial. Br J Ophthalmol 2013; 97: 1565-1568
  • 21 Prinz A, Vecsel-Marlovits PV, Sonderhof D et al. Comparison of posterior capsule opacification between a 1-piece and a 3-piece microincision intraocular lens. Br J Ophthalmol 2013; 97: 18-22
  • 22 Krall EM, Arlt EM, Jell G et al. Intraindividual aqueous flare comparison after implantation of hydrophobic intraocular lenses with or without a heparin-coated surface. J Cataract Refract Surg 2014; 40: 1363-1370
  • 23 Eibl KH, Wertheimer C, Kernt M et al. Alkylphosphocholines for intraocular lens coating. J Cataract Refract Surg 2013; 39: 438-445
  • 24 Wertheimer C, Brandlhuber U, Kook D et al. Erufosine, a phosphoinositide-3-kinase inhibitor, to mitigate posterior capsule opacification in the human capsular bag model. J Cataract Refract Surg 2015; 41: 1484-1489
  • 25 Eperon S, Rodriguez-Aller M, Balaskas K et al. A new drug delivery system inhibits uveitis in an animal model after cataract surgery. Int J Pharm 2013; 443: 254-261
  • 26 Garty S, Shirikawa R, Warsen A et al. Sustained antibiotic release from an intraocular lens-hydrogel assembly for cataract surgery. Invest Ophthalmol Vis Sci 2011; 52: 6109-6116
  • 27 Duarte AR, Simplicio AL, Vega-Gonzalez A et al. Impregnation of an intraocular lens for ophthalmic drug delivery. Curr Drug Deliv 2008; 5: 102-107
  • 28 Kugelberg M, Shafiei K, van der Ploeg I et al. Intraocular lens as adrug delivery system for dexamethasone. Acta Ophthalmol 2010; 88: 241-244
  • 29 Nishi O, Nishi K, Morita T et al. Effect of intraocular sustained release of indomethacin on postoperative inflammation and posterior capsule opacification. J Cataract Refract Surg 1996; 22 (Suppl. 01) S806-S810
  • 30 Shaw J, Smith EF, Desai RU et al. Can intraocular lense deliver antibiotics intracamerally?. J Ocul Pharmacol Ther 2010; 26: 587-589
  • 31 Kleinmann G, Apple DJ, Chew J et al. Hydrophilic acrylic intraocular lens as a drug-delivery system: Pilot study. J Cataract Refract Surg 2006; 32: 652-654
  • 32 Anderson EM, Noble ML, Garty S et al. Sustained release of antibiotics from poly(2-hydroxyethyl methacrylate) to prevent blinding infections after cataract surgery. Biomaterials 2009; 30: 5675-5681
  • 33 Lipnitzki I, Ben Eliahu S, Marcovitz AL et al. Intraocular concentration of moxifloxacin after intracameral injection combined with presoaked intraocular lenses. J Cataract Refract Surg 2014; 40: 639-643
  • 34 Sharma S, Sahu SK, Dhillon V et al. Reevaluating intracameral cerfuroxime as a prophylaxis against endophthalmitis after cataract surgery in India. J Cataract Refract Surg 2015; 41: 393-399
  • 35 Tan CS, Wong HK, Yang FP. Epidemiology of postoperative endophthalmitis in an Asian population: 11-year incidence and effect of intracameral antibiotic agents. J Cataract Refract Surg 2012; 38: 425-430
  • 36 Nentwich MM, Ta CN, Kreutzer C et al. Incidence of postoperative endophthalmitis from 1990 to 2009 using povidone-iodine but no intracameral antibiotics at a single academic institution. J Cataract Refract Surg 2015; 41: 58-66
  • 37 Chang DF, Braga-Mele R, Henderson BA et al. Antibiotic prophylaxis of postoperative endophthalmitis after cataract surgery: Results oft he 2014 ASCRS member survey. J Cataract Refract Surg 2015; 41: 1300-1305
  • 38 Röck T, Bramkamp M, Bartz-Schmidt KU et al. [Using intracameral cefuroxime reduces postoperative endophthalmitis rate: 5 years experience at the University Eye Hospital Tübingen]. Klin Monatsbl Augenheilkd 2014; 231: 1023-1028
  • 39 Dawes LJ, Illingworth CD, Wormstone IM. A fully human in vitro capsular bag model to permit intraocular lens evaluation. Invest Ophthalmol Vis Sci 2012; 53: 23-29
  • 40 Wormstone IM, Eldred JA. Experimental models for posterior capsule opacification research. Exp Eye Res 2015; pii: S0014-4835(15)00142-6
  • 41 Bagley RG, Kurtzberg L, Rouleau C et al. Erufosine, an alkylphosphocholine, with differential toxicity to human cancer cells and bone marrow cells. Cancer Chemother Pharmacol 2011; 68: 1537-1546
  • 42 Eibl KH, Liegl R, Kernt M et al. Alkylphosphocholines as a potential pharmacologic prophylaxis for posterior capsule opacification. J Cataract Refract Surg 2009; 35: 900-905
  • 43 Wertheimer C, Brandlhuber U, Kook D et al. Erufosine, a phosphoinositide-3-kinase inhibitor, to mitigate posterior capsule opacification in the human capsular bag model. J Cataract Refract Surg 2015; 41: 1484-1489
  • 44 Liegl R, Wertheimer C, Kernt M et al. Attenuation of human lens epithelial cell spreading, migration and contraction via downregulation of the PI3K/Akt pathway. Graefes Arch Clin Exp Ophthalmol 2014; 252: 285-292
  • 45 Spalton DJ, Russel SL, Evans-Gowing R et al. Effect of total lens epithelial cell destruction on intraocular lens fixation in the human capsular bag. J Cataract Refract Surg 2014; 40: 306-312
  • 46 Wertheimer C, Liegl R, Kernt M et al. EGF receptor inhibitor erlotinib as a potential pharmacological prophylaxis for posterior capsule opacification. Graefes Arch Clin Exp Ophthalmol 2013; 251: 1529-1540
  • 47 Wertheimer C, Siedlecki J, Kook D et al. EGFR inhibitor Gefitinib attenuates posterior capsule opacification in vitro and in the ex vivo human capsular bag model. Graefes Arch Clin Exp Ophthalmol 2015; 253: 409-417
  • 48 Gotoh N, Perdue NR, Matsushima H, Sage EH, Yan Q, Clark JI. An in vitro model of posterior capsular opacity: SPARC and TGF-beta2 minimize epithelial-to-mesenchymal transition in lens epithelium. Invest Ophthalmol Vis Sci 2007; 48: 4679-4687