Subscribe to RSS
DOI: 10.1055/s-0041-110387
Therapeutischer Effekt Sensor-gestützter Rehabilitationssysteme bei Schlaganfallpatienten
Therapeutic Effect of Sensor-based Rehabilitation Systems in Stroke PatientsPublication History
Publication Date:
09 February 2016 (online)
Zusammenfassung
Hintergrund: Steigende Lebenserwartung im Kontext des demografischen Wandels sowie entwickelte Diagnose- und Versorgungsstrukturen führen zu abnehmenden Inzidenz- und Mortalitätsraten, gleichzeitig jedoch zu höherer Prävalenz des Schlaganfalls in westlichen Industrienationen. Aktuelle Entwicklungen von Sensor-basierten Rehabilitationssystemen dienen als Ergänzung zu konventionellen Verfahren. Die Erfassung von Bewegungsdaten sowie die Verarbeitung und Ausgabe der Daten als Nutzerfeedback ermöglichen die Konzeption neuer, motivierender Schlaganfall-Therapiekonzepte.
Ziel der Arbeit: Dieser Übersichtsartikel untersucht Sensor-gestützte Rehabilitationssysteme bezüglich ihres therapeutischen Effekts bei Schlaganfallpatienten. Darüber hinaus sollen die differente Systemarchitektur sowie deren Zielstellung vorgestellt werden. Dabei finden Interventionsdauer sowie Häufigkeit und Länge der Trainingseinheiten Berücksichtigung.
Methoden: Nach Literaturrecherche wurden 10 Systeme eingeschlossen und differenziert analysiert. Der Effekt wurde über das modifizierte Cohen’s d operationalisiert und zudem in prozentualer Relation zum maximalen Assessment Score sowie zum Ausgangswert berechnet.
Ergebnisse: Die Erfassung von Bewegungsdaten erfolgt mit Inertialsensoren, optoelektronischen Systemen sowie 3D-Magnetometern. Im Mittel wurden 14±5,75 Probanden im Alter von 58,55±5,8 Jahren untersucht. Die Patienten waren 467,05±570,39 Tage post-stroke und trainierten über einen Zeitraum von 4,75±3,23 Wochen, in 4,3±0,82 Einheiten pro Woche für jeweils 48±29,83 min. Es konnten kleine bis sehr große Effekte (dmod=0,22–5,88) festgestellt werden.
Diskussion: Schlaganfallpatienten profitieren in unterschiedlichen Phasen nach Apoplex vom jeweiligen Rehabilitationssystem. Es kann kein klarer Ursache-Wirkung Zusammenhang zwischen Dauer der Intervention sowie der Trainingseinheit und dem therapeutischen Effekt festgestellt werden. Systematische Untersuchungsansätze hinsichtlich der optimalen Belastungsdosierung beim jeweiligen Patientenkollektiv stehen noch aus. Klinisch relevante motorische Funktionseinschränkungen bestehen noch Jahre nach dem Insult, was den langfristigen Therapiebedarf im häuslichen Umfeld unterstreicht. Aus den Ergebnissen ergeben sich erste Ansätze zur Beurteilung der Eignung der Sensor-gestützten Schlaganfallrehabilitation.
Abstract
Background: The increase of average life expectancy in the course of demographic change, as well as further developed methods of diagnosis and medical care are leading to decreasing rates of incidence and mortality but simultaneously to an increasing prevalence of stroke in western industrial nations. Current developments of sensor-based rehabilitation systems supplement conventional therapy. Measuring motion data and processing the information to give feedback to the user allow the conception of new, motivating stroke therapy concepts.
Objective: The aim of this review article is to analyze sensor-based rehabilitation systems regarding their therapeutic effect on stroke patients. Furthermore, different system goals and architectures are introduced. Thereby the length and frequency of the training sessions are taken into consideration, as well as the overall duration of the intervention.
Methods: After analyzing the literature, 10 systems were included and investigated. The effect was operationalized with the modified Cohen’s d and was calculated in propotional relation to the maximal assessment score as well as to baseline.
Results: Motion data was recorded using inertial sensors, optoelectronic systems and 3-dimensional magnetometers. On average, 14±5.75 subjects aged 58.55±5.8 years were investigated. The patients were 467.05±570.39 days post-stroke and trained over a period of 4.75±3.23 weeks on 4.3±0.82 sessions per week lasting 48±29.83 min each. Small to very large effects (dmod=0.22–5.88) were documented.
Conclusions: Stroke patients at different stages post-stroke benefit from the respective rehabilitation systems. No clear cause and effect was found between the length of the intervention or training session and the therapeutic effect. Systematic explorations regarding the optimal dose of stress for the respective patient population are still pending. There are persisting motor function deficits of clinical relevance years after the stroke which emphasizes the demand for long-term therapy in the home environment. The results give first indications for evaluating the aptitude of sensor-based stroke rehabilitation.
-
Literatur
- 1 Claiborne Johnston S, Mendis S, Mathers CD. Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling. Lancet Neurol 2009; 8: 345-354
- 2 Heuschmann P, Busse O, Wagner M et al. Schlaganfallhäufigkeit und Versorgung von Schlaganfallpatienten in Deutschland. Akt Neurol 2010; 37: 333-340
- 3 Busch MA, Schienkiewitz A, Nowossadeck E et al. Prävalenz des Schlaganfalls bei Erwachsenen im Alter von 40 bis 79 Jahren in Deutschland: Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1) (Prevalence of stroke in adults aged 40 to 79 years in Germany: results of the German Health Interview and Examination Survey for Adults (DEGS1)). Bundesgesundheitsbl. 2013. 56. 656-660
- 4 Heuschmann P, Di Carlo A, Bejot Y et al. Incidence of stroke in Europe at the beginning of the 21st century. Stroke 2009; 40: 1557-1563
- 5 Kolominsky-Rabas PL, Sarti C, Heuschmann PU et al. A prospective community-based study of stroke in Germany – the Erlangen Stroke Project (ESPro): incidence and case fatality at 1, 3, and 12 months. Stroke 1998; 29: 2501-2506
- 6 Lichy C, Hacke W. Schlaganfall (Stroke). Internist 2010; 51: 1003-1011
- 7 Weimar C, Diener H. Diagnose und Therapie der Schlaganfallbehandlung in Deutschland. Ergebnisse der deutschen Schlaganfalldatenbank. Dtsch Arztebl 2003; 100: A2576-A2582
- 8 Woldag H, Hummelsheim H. Prädikatoren nach Schlaganfall. In: Mehrholz J. (Hrsg.) Neuroreha nach Schlaganfall. Stuttgart: Thieme; 2011: 9-16
- 9 Allet L, Knols RH, Shirato K et al. Wearable systems for monitoring mobility-related activities in chronic disease: a systematic review. Sensors 2010; 10: 9026-9052
- 10 Bonato P. Wearable sensors and systems. From enabling technology to clinical applications. IEEE Eng Med Biol Mag 2010; 29: 25-36
- 11 Coyle S, Mitchell E, Ward T et al. Textile sensors for personalized feedback. In: IAPMA2010 – ECIR2010 workshop on information access for personal media archives 2010
- 12 Davies R, Galway L, Nugent C et al. A Platform for Self-Management Supported by Assistive, Rehabilitation and Telecare Technologies. In: 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops 2011 Dublin
- 13 Dobkin BH, Dorsch A. The promise of mHealth: daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair 2011; 25: 788-798
- 14 Dorronzoro Zubiete E, Fernandez-Luque L, Rodriguez M et al. Review of Wireless Sensors Networks in Health Applications. In: Conf Proc IEEE Eng Med Biol Soc 2011; 1789-1793
- 15 Giggins O, Persson U, Caulfield B. Biofeedback in rehabilitation. J Neuroeng Rehabil 2013; 10: 1-11
- 16 Patel S, Park H, Bonato P et al. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil 2012; 9: 21
- 17 Teng X, Zhang Y Poon et al. Wearable medical systems for p-Health. IEEE Rev Biomed Eng 2008; 1: 62-74
- 18 Zschenderlein D, Reichmann V, Möhring U et al. Textile Sensor- und Aktuatorlösungen für Prävention und Rehabilitation. tm – Technisches Messen 2013; 80: 173-178
- 19 Alankus G, Lazar A, May M et al. Towards customizable games for stroke rehabilitation. In: CHI 2010, Atlanta: 2113–2122
- 20 Dormer C, Ward T, McLoone S. Towards enhanced biofeedback mechanisms for upper limb rehabilitation in stroke. In: 6th European Symposium on Biomedical Engineering 2008 Crete
- 21 Prashun P, Hadley G, Gatzidis C et al. Investigating the trend of virtual reality-based stroke rehabilitation systems. In 14th International Conference Information Visualisation 2010; 641-647
- 22 Saposnik G, Levin M. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke 2011; 42: 1380-1386
- 23 Laver K, George S, Thomas S et al. Virtual Reality for Stroke Rehabilitation. Stroke 2012; 43: e20-e21
- 24 Laver K, George S, Thomas S et al. Cochrane review: virtual reality for stroke rehabilitation. Eur J Phys Rehabil Med 2012; 48: 523-530
- 25 Webster D, Celik O. Systematic review of kinect applications in elderly care and stroke rehabilitation. J Neuroeng Rehabil 2014; 11: 1-24
- 26 Ferreira C, Guimares V, Santos A et al. Gamification of stroke rehabilitation exercises using a smartphone. In 8th international conference on pervasive computing technologies for healthcare Oldenburg 2014; 282-285
- 27 Göbel S, Hardy S, Steinmetz R et al. Serious Games zur Prävention und Rehabilitation. In: 4. Deutscher AAL-Kongress 2011 Berlin
- 28 Burke JW, McNeill M, Charles D et al. Serious games for upper limb rehabilitation following stroke. In: VS-GAMES 2009; 103-110
- 29 Burke JW, McNeill M, Charles DK et al. Augmented reality games for upper-limb stroke rehabilitation. In: VS-GAMES 2010; 75-78
- 30 Burke JW, McNeill M.D.J., Charles DK et al. Optimising engagement for stroke rehabilitation using serious games. Vis Comput 2009; 25: 1085-1099
- 31 Borghese N, Pirovano M, Mainetti R et al. An integrated low-cost system for at-home rehabilitation. In 18th international conference on virtual systems and multimedia 2012; 553-556
- 32 Sadihov D, Migge B, Gassert R et al. Prototype of a vr upper-limb rehabilitation system enhanced with motion-based tactile feedback. In: IEEE World Haptics Conference 2013; 449-454
- 33 Harley L, Robertson S, Gandy M et al. The design of an interactive stroke rehabilitation gaming system. Human Comput Interact Users Appl 2011; Iv 167-173
- 34 Tognetti A, Lorussi F, Bartalesi R et al. Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation. J Neuroengineering Rehabil 2005; 2: 8
- 35 Giorgino T, Tormene P, Maggioni G et al. Wireless support to poststroke rehabilitation: MyHeart’s neurological rehabilitation concept. IEEE Trans Inf Technol Biomed 2009; 13: 1012-1018
- 36 Cameirão M, Badia SB, Duarte E et al. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 2012; 43: 2720-2728
- 37 Cameirão M, Bermúdez I, Badia S et al. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci 2011; 29: 287-298
- 38 Shin J, Ryu H, Jang SH. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabil 2014; 11: 1-10
- 39 Cohen J. Statistical power analysis for the behavioural science. New Jersey: Lawrence Erbaum Associates Publishers; 1988
- 40 Saposnik G, Teasell R, Mamdani M et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke 2010; 41: 1477-1484
- 41 Joo L, Yin TS, Xu D et al. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med 2010; 42: 437-441
- 42 Sungkarat S, Fisher BE, Kovindha A. Efficacy of an insole shoe wedge and augmented pressure sensor for gait training in individuals with stroke: a randomized controlled trial. Clin Rehabil 2011; 25: 360-369
- 43 Piron L, Turolla A, Agostini M et al. Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair 2010; 24: 501-508
- 44 Turolla A, Dam M, Ventura L et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil 2013; 10: 1-9
- 45 Llorens R, Alcaniz M, Colomer C et al. Balance Recovery Through Virtual Stepping Exercises Using Kinect Skeleton Tracking: A Follow-Up Study with Chronic Stroke Patients. Stud Health Technol Inform 2012; 181: 108-112
- 46 Timmermans AA, Seelen HA, Geers RP et al. Sensor-based arm skill training in chronic stroke patients: results on treatment outcome, patient motivation, and system usability. IEEE Trans Neural Syst Rehabil Eng 2010; 18: 284-292
- 47 Platz T. Arm-Basis-Training und Arm-Fähigkeits-Training. In: Mehrholz J. (Hrsg.) Neuroreha nach Schlaganfall. Stuttgart: Thieme; 2011: 81-94
- 48 Belda-Lois JM, Mena-del Horno S, Bermejo-Bosch I et al. Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 2011; 8: 66
- 49 Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol 2009; 8: 741-754