Subscribe to RSS
DOI: 10.1055/s-0041-1725124
Vascular Spinal Cord Disorders
Abstract
Vascular disorders of the spinal cord are uncommon yet under-recognized causes of myelopathy. Etiologies can be predominantly categorized into clinical and radiographic presentations of arterial ischemia, venous congestion/ischemia, hematomyelia, and extraparenchymal hemorrhage. While vascular myelopathies often produce significant morbidity, recent advances in the understanding and recognition of these disorders should continue to expedite diagnosis and proper management, and ideally improve patient outcomes. This article comprehensively reviews relevant spinal cord vascular anatomy, clinical features, radiographic findings, treatment, and prognosis of vascular disorders of the spinal cord.
Keywords
vascular myelopathy - spinal cord infarction - spinal cord disorder - spinal dural arteriovenous fistula - hematomyeliaPublication History
Article published online:
19 May 2021
© 2021. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Zalewski NL, Flanagan EP, Keegan BM. Evaluation of idiopathic transverse myelitis revealing specific myelopathy diagnoses. Neurology 2018; 90 (02) e96-e102
- 2 Nasr DM, Brinjikji W, Rabinstein AA, Lanzino G. Clinical outcomes following corticosteroid administration in patients with delayed diagnosis of spinal arteriovenous fistulas. J Neurointerv Surg 2017; 9 (06) 607-610
- 3 Brinjikji W, Nasr DM, Morris JM, Rabinstein AA, Lanzino G. Clinical outcomes of patients with delayed diagnosis of spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2016; 37 (02) 380-386
- 4 Rabinstein AA. Vascular myelopathies. Continuum (Minneap Minn) 2015; 21 (1 Spinal Cord Disorders): 67-83
- 5 Kramer CL. Vascular disorders of the spinal cord. Continuum (Minneap Minn) 2018; 24 (2, Spinal Cord Disorders): 407-426
- 6 Colman MW, Hornicek FJ, Schwab JH. Spinal cord blood supply and its surgical implications. J Am Acad Orthop Surg 2015; 23 (10) 581-591
- 7 Martirosyan NL, Feuerstein JS, Theodore N, Cavalcanti DD, Spetzler RF, Preul MC. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions. J Neurosurg Spine 2011; 15 (03) 238-251
- 8 Rubin MN, Rabinstein AA. Vascular diseases of the spinal cord. Neurol Clin 2013; 31 (01) 153-181
- 9 Etz CD, Kari FA, Mueller CS. et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg 2011; 141 (04) 1020-1028
- 10 Ullman N, Gregg L, Becker D, Pardo C, Gailloud P. Anterior disco-osteo-arterial conflict as a cause of intersegmental arterial flow impairment and spinal cord ischemia. Neuroradiology 2016; 58 (11) 1109-1115
- 11 Gregg L, Sorte DE, Gailloud P. Intraforaminal location of thoracolumbar radicular arteries providing an anterior radiculomedullary artery using flat panel catheter angiotomography. AJNR Am J Neuroradiol 2017; 38 (05) 1054-1060
- 12 Gailloud P, Gregg L, Galan P, Becker D, Pardo C. Periconal arterial anastomotic circle and posterior lumbosacral watershed zone of the spinal cord. J Neurointerv Surg 2015; 7 (11) 848-853
- 13 Miyasaka K, Asano T, Ushikoshi S, Hida K, Koyanagi I. Vascular anatomy of the spinal cord and classification of spinal arteriovenous malformations. Interv Neuroradiol 2000; 6 (Suppl. 01) 195-198
- 14 Ullery BW, Cheung AT, Fairman RM. et al. Risk factors, outcomes, and clinical manifestations of spinal cord ischemia following thoracic endovascular aortic repair. J Vasc Surg 2011; 54 (03) 677-684
- 15 Robertson CE, Brown Jr RD, Wijdicks EF, Rabinstein AA. Recovery after spinal cord infarcts: long-term outcome in 115 patients. Neurology 2012; 78 (02) 114-121
- 16 Zalewski NL, Rabinstein AA, Krecke KN. et al. Spinal cord infarction: clinical and imaging insights from the periprocedural setting. J Neurol Sci 2018; 388: 162-167
- 17 Gialdini G, Parikh NS, Chatterjee A. et al. Rates of spinal cord infarction after repair of aortic aneurysm or dissection. Stroke 2017; 48 (08) 2073-2077
- 18 Epstein NE. Cerebrospinal fluid drains reduce risk of spinal cord injury for thoracic/thoracoabdominal aneurysm surgery: a review. Surg Neurol Int 2018; 9: 48
- 19 Cheung AT, Pochettino A, McGarvey ML. et al. Strategies to manage paraplegia risk after endovascular stent repair of descending thoracic aortic aneurysms. Ann Thorac Surg 2005; 80 (04) 1280-1288 , discussion 1288–1289
- 20 Zalewski NL, Rabinstein AA, Krecke KN. et al. Characteristics of spontaneous spinal cord infarction and proposed diagnostic criteria. JAMA Neurol 2019; 76 (01) 56-63
- 21 Coselli JS, LeMaire SA, Köksoy C, Schmittling ZC, Curling PE. Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg 2002; 35 (04) 631-639
- 22 Nasr DM, Rabinstein A. Spinal cord infarcts: risk factors, management, and prognosis. Curr Treat Options Neurol 2017; 19 (08) 28
- 23 Augoustides JG, Stone ME, Drenger B. Novel approaches to spinal cord protection during thoracoabdominal aortic interventions. Curr Opin Anaesthesiol 2014; 27 (01) 98-105
- 24 Sugiura J, Oshima H, Abe T. et al. The efficacy and risk of cerebrospinal fluid drainage for thoracoabdominal aortic aneurysm repair: a retrospective observational comparison between drainage and non-drainage. Interact Cardiovasc Thorac Surg 2017; 24 (04) 609-614
- 25 Banga PV, Oderich GS, Reis de Souza L. et al. Neuromonitoring, cerebrospinal fluid drainage, and selective use of iliofemoral conduits to minimize risk of spinal cord injury during complex endovascular aortic repair. J Endovasc Ther 2016; 23 (01) 139-149
- 26 McGarvey ML, Cheung AT, Szeto W, Messe SR. Management of neurologic complications of thoracic aortic surgery. J Clin Neurophysiol 2007; 24 (04) 336-343
- 27 Sandson TA, Friedman JH. Spinal cord infarction. Report of 8 cases and review of the literature. Medicine (Baltimore) 1989; 68 (05) 282-292
- 28 Barreras P, Fitzgerald KC, Mealy MA. et al. Clinical biomarkers differentiate myelitis from vascular and other causes of myelopathy. Neurology 2018; 90 (01) e12-e21
- 29 Zalewski NL, Rabinstein AA, Wijdicks EFM. et al. Spontaneous posterior spinal artery infarction: an under-recognized cause of acute myelopathy. Neurology 2018; 91 (09) 414-417
- 30 Novy J, Carruzzo A, Maeder P, Bogousslavsky J. Spinal cord ischemia: clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch Neurol 2006; 63 (08) 1113-1120
- 31 Weidauer S, Nichtweiss M, Lanfermann H, Zanella FE. Spinal cord infarction: MR imaging and clinical features in 16 cases. Neuroradiology 2002; 44 (10) 851-857
- 32 Abou Al-Shaar H, AbouAl-Shaar I, Al-Kawi MZ. Acute cervical cord infarction in anterior spinal artery territory with acute swelling mimicking myelitis. Neurosciences (Riyadh) 2015; 20 (04) 372-375
- 33 Battey TW, Karki M, Singhal AB. et al. Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke 2014; 45 (12) 3643-3648
- 34 Cheshire WP, Santos CC, Massey EW, Howard Jr JF. Spinal cord infarction: etiology and outcome. Neurology 1996; 47 (02) 321-330
- 35 Mateen FJ, Monrad PA, Hunderfund AN, Robertson CE, Sorenson EJ. Clinically suspected fibrocartilaginous embolism: clinical characteristics, treatments, and outcomes. Eur J Neurol 2011; 18 (02) 218-225
- 36 Cheshire Jr WP. Spinal cord infarction mimicking angina pectoris. Mayo Clin Proc 2000; 75 (11) 1197-1199
- 37 Thurnher MM, Bammer R. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology 2006; 48 (11) 795-801
- 38 Udiya AK, Shetty GS, Singh V, Phadke RV. “Owl eye sign”: anterior spinal artery syndrome. Neurol India 2015; 63 (03) 459
- 39 Kobayashi M. Spinal cord, vertebral body, paraspinal muscle, and rib infarction: Tiny thrombus detected by CT. Neurology 2016; 87 (06) 642-643
- 40 Salvarani C, Brown Jr RD, Calamia KT. et al. Primary CNS vasculitis with spinal cord involvement. Neurology 2008; 70 (24) (24, Pt 2): 2394-2400
- 41 Sakurai T, Wakida K, Nishida H. Cervical posterior spinal artery syndrome: a case report and literature review. J Stroke Cerebrovasc Dis 2016; 25 (06) 1552-1556
- 42 Gempp E, Blatteau JE. Risk factors and treatment outcome in scuba divers with spinal cord decompression sickness. J Crit Care 2010; 25 (02) 236-242
- 43 Salvarani C, Brown Jr RD, Christianson TJH. et al. Primary central nervous system vasculitis associated with lymphoma. Neurology 2018; 90 (10) e847-e855
- 44 Hurst RW, Kenyon LC, Lavi E, Raps EC, Marcotte P. Spinal dural arteriovenous fistula: the pathology of venous hypertensive myelopathy. Neurology 1995; 45 (07) 1309-1313
- 45 Aminoff MJ, Barnard RO, Logue V. The pathophysiology of spinal vascular malformations. J Neurol Sci 1974; 23 (02) 255-263
- 46 Jellema K, Tijssen CC, van Gijn J. Spinal dural arteriovenous fistulas: a congestive myelopathy that initially mimics a peripheral nerve disorder. Brain 2006; 129 (Pt 12): 3150-3164
- 47 Fugate JE, Lanzino G, Rabinstein AA. Clinical presentation and prognostic factors of spinal dural arteriovenous fistulas: an overview. Neurosurg Focus 2012; 32 (05) E17
- 48 Thron A. [Spinal dural arteriovenous fistulas]. Radiologe 2001; 41 (11) 955-960
- 49 Grandin C, Duprez T, Stroobandt G, Laterre EC, Mathurin P. Spinal dural arterio-venous fistula: an underdiagnosed disease?. Acta Neurol Belg 1997; 97 (01) 17-21
- 50 Bradac GB, Daniele D, Riva A. et al. Spinal dural arteriovenous fistulas: an underestimated cause of myelopathy. Eur Neurol 1994; 34 (02) 87-94
- 51 Narvid J, Hetts SW, Larsen D. et al. Spinal dural arteriovenous fistulae: clinical features and long-term results. Neurosurgery 2008; 62 (01) 159-166 , discussion 166–167
- 52 Aminoff MJ, Logue V. Clinical features of spinal vascular malformations. Brain 1974; 97 (01) 197-210
- 53 Jellema K, Canta LR, Tijssen CC, van Rooij WJ, Koudstaal PJ, van Gijn J. Spinal dural arteriovenous fistulas: clinical features in 80 patients. J Neurol Neurosurg Psychiatry 2003; 74 (10) 1438-1440
- 54 Atkinson JL, Miller GM, Krauss WE. et al. Clinical and radiographic features of dural arteriovenous fistula, a treatable cause of myelopathy. Mayo Clin Proc 2001; 76 (11) 1120-1130
- 55 Lee J, Lim Y-M, Suh DC, Rhim SC, Kim SJ, Kim K-K. Clinical presentation, imaging findings, and prognosis of spinal dural arteriovenous fistula. J Clin Neurosci 2016; 26: 105-109
- 56 Muralidharan R, Saladino A, Lanzino G, Atkinson JL, Rabinstein AA. The clinical and radiological presentation of spinal dural arteriovenous fistula. Spine 2011; 36 (25) E1641-E1647
- 57 McKeon A, Lindell EP, Atkinson JL, Weinshenker BG, Piepgras DG, Pittock SJ. Pearls & oy-sters: clues for spinal dural arteriovenous fistulae. Neurology 2011; 76 (03) e10-e12
- 58 Toossi S, Josephson SA, Hetts SW. et al. Utility of MRI in spinal arteriovenous fistula. Neurology 2012; 79 (01) 25-30
- 59 Gilbertson JR, Miller GM, Goldman MS, Marsh WR. Spinal dural arteriovenous fistulas: MR and myelographic findings. AJNR Am J Neuroradiol 1995; 16 (10) 2049-2057
- 60 Lindenholz A, TerBrugge KG, van Dijk JM, Farb RI. The accuracy and utility of contrast-enhanced MR angiography for localization of spinal dural arteriovenous fistulas: the Toronto experience. Eur Radiol 2014; 24 (11) 2885-2894
- 61 Krings T, Geibprasert S. Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2009; 30 (04) 639-648
- 62 Gao P, Du S, Ren J, Li G, Zhang H. Teaching NeuroImages: lower cervical spine dural arteriovenous fistula presenting as subarachnoid hemorrhage. Neurology 2019; 92 (15) e1798-e1800
- 63 Hamdan A, Padmanabhan R. Intramedullary hemorrhage from a thoracolumbar dural arteriovenous fistula. Spine J 2015; 15 (02) e9-e16
- 64 Zalewski NL, Rabinstein AA, Brinjikji W. et al. Unique gadolinium enhancement pattern in spinal dural arteriovenous fistulas. JAMA Neurol 2018; 75 (12) 1542-1545
- 65 Saraf-Lavi E, Bowen BC, Quencer RM. et al. Detection of spinal dural arteriovenous fistulae with MR imaging and contrast-enhanced MR angiography: sensitivity, specificity, and prediction of vertebral level. AJNR Am J Neuroradiol 2002; 23 (05) 858-867
- 66 Luetmer PH, Lane JI, Gilbertson JR, Bernstein MA, Huston III J, Atkinson JL. Preangiographic evaluation of spinal dural arteriovenous fistulas with elliptic centric contrast-enhanced MR angiography and effect on radiation dose and volume of iodinated contrast material. AJNR Am J Neuroradiol 2005; 26 (04) 711-718
- 67 Bowen BC, Fraser K, Kochan JP, Pattany PM, Green BA, Quencer RM. Spinal dural arteriovenous fistulas: evaluation with MR angiography. AJNR Am J Neuroradiol 1995; 16 (10) 2029-2043
- 68 Manners J, Jadhav AP, Xia Z. Mystery case: A 61-year-old woman with lower extremity paralysis and sensory loss. Neurology 2017; 89 (22) e257-e263
- 69 Shin MJ, Kim W, Baik SK, Kim SY, Kim SN. Cauda equina syndrome caused by spinal dural arteriovenous fistula. Ann Rehabil Med 2011; 35 (06) 928-933
- 70 Steinmetz MP, Chow MM, Krishnaney AA. et al. Outcome after the treatment of spinal dural arteriovenous fistulae: a contemporary single-institution series and meta-analysis. Neurosurgery 2004; 55 (01) 77-87 , discussion 87–88
- 71 Saladino A, Atkinson JL, Rabinstein AA. et al. Surgical treatment of spinal dural arteriovenous fistulae: a consecutive series of 154 patients. Neurosurgery 2010; 67 (05) 1350-1357 , discussion 1357–1358
- 72 Koch MJ, Stapleton CJ, Agarwalla PK. et al. Open and endovascular treatment of spinal dural arteriovenous fistulas: a 10-year experience. J Neurosurg Spine 2017; 26 (04) 519-523
- 73 Kaufmann TJ, Morris JM, Saladino A, Mandrekar JN, Lanzino G. Magnetic resonance imaging findings in treated spinal dural arteriovenous fistulas: lack of correlation with clinical outcomes. J Neurosurg Spine 2011; 14 (04) 548-554
- 74 Muralidharan R, Mandrekar J, Lanzino G, Atkinson JL, Rabinstein AA. Prognostic value of clinical and radiological signs in the postoperative outcome of spinal dural arteriovenous fistula. Spine 2013; 38 (14) 1188-1193
- 75 Nasr DM, Brinjikji W, Clarke MJ, Lanzino G. Clinical presentation and treatment outcomes of spinal epidural arteriovenous fistulas. J Neurosurg Spine 2017; 26 (05) 613-620
- 76 Brinjikji W, Yin R, Nasr DM, Lanzino G. Spinal epidural arteriovenous fistulas. J Neurointerv Surg 2016; 8 (12) 1305-1310
- 77 Uygunoglu U, Zeydan B, Ozguler Y. et al. Myelopathy in Behçet's disease: the Bagel sign. Ann Neurol 2017; 82 (02) 288-298
- 78 Zalewski NL, Flanagan EP. Autoimmune and paraneoplastic myelopathies. Semin Neurol 2018; 38 (03) 278-289
- 79 Koçer N, Islak C, Siva A. et al. CNS involvement in neuro-Behçet syndrome: an MR study. AJNR Am J Neuroradiol 1999; 20 (06) 1015-1024
- 80 Shaban A, Moritani T, Al Kasab S, Sheharyar A, Limaye KS, Adams Jr HP. Spinal cord hemorrhage. J Stroke Cerebrovasc Dis 2018; 27 (06) 1435-1446
- 81 Leep Hunderfund AN, Wijdicks EF. Intramedullary spinal cord hemorrhage (hematomyelia). Rev Neurol Dis 2009; 6 (02) E54-E61
- 82 Clark MT, Brooks EL, Chong W, Pappas C, Fahey M. Cobb syndrome: a case report and systematic review of the literature. Pediatr Neurol 2008; 39 (06) 423-425
- 83 Zozulya YP, Slin'ko EI, Al-Qashqish II. Spinal arteriovenous malformations: new classification and surgical treatment. Neurosurg Focus 2006; 20 (05) E7
- 84 Rosenblum B, Oldfield EH, Doppman JL, Di Chiro G. Spinal arteriovenous malformations: a comparison of dural arteriovenous fistulas and intradural AVM's in 81 patients. J Neurosurg 1987; 67 (06) 795-802
- 85 Gross BA, Du R. Spinal glomus (type II) arteriovenous malformations: a pooled analysis of hemorrhage risk and results of intervention. Neurosurgery 2013; 72 (01) 25-32 , discussion 32
- 86 Hong T, Yan Y, Li J. et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain 2019; 142 (01) 23-34
- 87 Kim LJ, Spetzler RF. Classification and surgical management of spinal arteriovenous lesions: arteriovenous fistulae and arteriovenous malformations. Neurosurgery 2006; 59 (05, Suppl 3): discussion S3–S13 (Suppl. 03) S195-S201
- 88 Ducruet AF, Crowley RW, McDougall CG, Albuquerque FC. Endovascular management of spinal arteriovenous malformations. J Neurointerv Surg 2013; 5 (06) 605-611
- 89 Endo T, Endo H, Sato K, Matsumoto Y, Tominaga T. Surgical and endovascular treatment for spinal arteriovenous malformations. Neurol Med Chir (Tokyo) 2016; 56 (08) 457-464
- 90 Kalani MA, Choudhri O, Gibbs IC. et al. Stereotactic radiosurgery for intramedullary spinal arteriovenous malformations. J Clin Neurosci 2016; 29: 162-167
- 91 Gross BA, Lin N, Du R, Day AL. The natural history of intracranial cavernous malformations. Neurosurg Focus 2011; 30 (06) E24
- 92 Del Curling Jr O, Kelly Jr DL, Elster AD, Craven TE. An analysis of the natural history of cavernous angiomas. J Neurosurg 1991; 75 (05) 702-708
- 93 Goyal A, Rinaldo L, Alkhataybeh R. et al. Clinical presentation, natural history and outcomes of intramedullary spinal cord cavernous malformations. J Neurol Neurosurg Psychiatry 2019; 90 (06) 695-703
- 94 Badhiwala JH, Farrokhyar F, Alhazzani W. et al. Surgical outcomes and natural history of intramedullary spinal cord cavernous malformations: a single-center series and meta-analysis of individual patient data: clinic article. J Neurosurg Spine 2014; 21 (04) 662-676
- 95 Nimjee SM, Powers CJ, Bulsara KR. Review of the literature on de novo formation of cavernous malformations of the central nervous system after radiation therapy. Neurosurg Focus 2006; 21 (01) e4
- 96 Jeon I, Jung WS, Suh SH, Chung TS, Cho YE, Ahn SJ. MR imaging features that distinguish spinal cavernous angioma from hemorrhagic ependymoma and serial MRI changes in cavernous angioma. J Neurooncol 2016; 130 (01) 229-236
- 97 Nagib MG, O'Fallon MT. Intramedullary cavernous angiomas of the spinal cord in the pediatric age group: a pediatric series. Pediatr Neurosurg 2002; 36 (02) 57-63
- 98 Hegde AN, Mohan S, Lim CC. CNS cavernous haemangioma: “popcorn” in the brain and spinal cord. Clin Radiol 2012; 67 (04) 380-388
- 99 Kharkar S, Shuck J, Conway J, Rigamonti D. The natural history of conservatively managed symptomatic intramedullary spinal cord cavernomas. Neurosurgery 2007; 60 (05) 865-872 , discussion 865–872
- 100 Zhang L, Yang W, Jia W. et al. Comparison of outcome between surgical and conservative management of symptomatic spinal cord cavernous malformations. Neurosurgery 2016; 78 (04) 552-561
- 101 Constantini S, Ashkenazi E, Shoshan Y, Israel Z, Umansky F. Thoracic hematomyelia secondary to Coumadin anticoagulant therapy: a case report. Eur Neurol 1992; 32 (02) 109-111
- 102 Pisani R, Carta F, Guiducci G, Silvestro C, Davini MD. Hematomyelia during anticoagulant therapy. Surg Neurol 1985; 24 (05) 578-580
- 103 Zeidman SM, Olivi A. Cervical intramedullary hemorrhage as a result of anticoagulant therapy. J Spinal Disord 1993; 6 (05) 456-457 , discussion 457–458
- 104 Sedzimir CB, Roberts JR, Occleshaw JV, Buxton PH. Gowers' syringal haemorrhage. J Neurol Neurosurg Psychiatry 1974; 37 (03) 312-315
- 105 Holtås S, Heiling M, Lönntoft M. Spontaneous spinal epidural hematoma: findings at MR imaging and clinical correlation. Radiology 1996; 199 (02) 409-413
- 106 Lawton MT, Porter RW, Heiserman JE, Jacobowitz R, Sonntag VK, Dickman CA. Surgical management of spinal epidural hematoma: relationship between surgical timing and neurological outcome. J Neurosurg 1995; 83 (01) 1-7
- 107 Bakker NA, Veeger NJ, Vergeer RA, Groen RJ. Prognosis after spinal cord and cauda compression in spontaneous spinal epidural hematomas. Neurology 2015; 84 (18) 1894-1903
- 108 Akiyama Y, Koyanagi I, Mikuni N. Chronic spinal subdural hematoma associated with antiplatelet therapy. World Neurosurg 2017; 105: 1032.e1-1032.e5
- 109 Ma H, Kim I. Idiopathic lumbosacral spinal chronic subdural hematoma. Korean J Spine 2012; 9 (01) 41-43
- 110 Rinkel GJ, van Gijn J, Wijdicks EF. Subarachnoid hemorrhage without detectable aneurysm. A review of the causes. Stroke 1993; 24 (09) 1403-1409
- 111 Yost MD, Rabinstein AA. Spontaneous spinal subarachnoid hemorrhage: presentation and outcome. J Stroke Cerebrovasc Dis 2018; 27 (10) 2792-2796