Semin Neurol 2021; 41(02): 206-216
DOI: 10.1055/s-0041-1725137
Review Article

Brain–Computer Interfaces in Neurorecovery and Neurorehabilitation

Michael J. Young
1   Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
,
David J. Lin
1   Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
2   School of Engineering and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
3   Department of Veterans Affairs Medical Center, VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island
,
Leigh R. Hochberg
1   Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
2   School of Engineering and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
3   Department of Veterans Affairs Medical Center, VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island
› Institutsangaben
Funding This work was supported by the NIH BRAIN Initiative, National Institute of Mental Health, F32MH123001, National Institute of Neurologic Diseases and Stroke, UH2NS095548; National Institute on Deafness and Other Communication Disorders, U01DC017844; Henry and Allison McCance Center for Brain Health/Mass General Neuroscience SPARC Award; Office of Research and Development, Rehabilitation R&D Service, U.S. Department of Veterans Affairs (N2864C, A2295R). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the Department of Veterans Affairs or the U.S. government. The funders had no role in the design, analysis, preparation, review, approval or decision to submit this manuscript for publication.

Abstract

Recent advances in brain–computer interface technology to restore and rehabilitate neurologic function aim to enable persons with disabling neurologic conditions to communicate, interact with the environment, and achieve other key activities of daily living and personal goals. Here we evaluate the principles, benefits, challenges, and future directions of brain–computer interfaces in the context of neurorehabilitation. We then explore the clinical translation of these technologies and propose an approach to facilitate implementation of brain–computer interfaces for persons with neurologic disease.

Disclosure

The MGH Translational Research Center has a clinical research support agreement with Neuralink, Paradromics, and Synchron, for which L.R.H. provides consultative input.




Publikationsverlauf

Artikel online veröffentlicht:
19. März 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 2004; 21 (10) 1371-1383
  • 2 Bockbrader MA, Francisco G, Lee R, Olson J, Solinsky R, Boninger ML. Brain computer interfaces in rehabilitation medicine. PM R 2018; 10 (09) (Suppl. 02) S233-S243
  • 3 Lee MB, Kramer DR, Peng T. et al. Brain-computer interfaces in quadriplegic patients. Neurosurg Clin N Am 2019; 30 (02) 275-281
  • 4 Kögel J, Schmid JR, Jox RJ, Friedrich O. Using brain-computer interfaces: a scoping review of studies employing social research methods. BMC Med Ethics 2019; 20 (01) 18
  • 5 Coenen A, Fine E, Zayachkivska O. Adolf Beck: a forgotten pioneer in electroencephalography. J Hist Neurosci 2014; 23 (03) 276-286
  • 6 Zayachkivska O, Gzhegotsky M, Coenen A. Impact on electroencephalography of Adolf Beck, a prominent Polish scientist and founder of the Lviv School of Physiology. Int J Psychophysiol 2012; 85 (01) 3-6
  • 7 Silvoni S, Ramos-Murguialday A, Cavinato M. et al. Brain-computer interface in stroke: a review of progress. Clin EEG Neurosci 2011; 42 (04) 245-252
  • 8 Wolpaw JR, Birbaumer N, Heetderks WJ. et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 2000; 8 (02) 164-173
  • 9 Vaughan TM, Heetderks WJ, Trejo LJ. et al. Brain-computer interface technology: a review of the Second International Meeting. IEEE Trans Neural Syst Rehabil Eng 2003; 11 (02) 94-109
  • 10 Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng 2019; 16 (01) 011001
  • 11 Leuthardt EC, Schalk G, Roland J, Rouse A, Moran DW. Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurg Focus 2009; 27 (01) E4
  • 12 Remsik A, Young B, Vermilyea R. et al. A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke. Expert Rev Med Devices 2016; 13 (05) 445-454
  • 13 Mudry A, Mills M. The early history of the cochlear implant: a retrospective. JAMA Otolaryngol Head Neck Surg 2013; 139 (05) 446-453
  • 14 Lee B, Zubair MN, Marquez YD. et al. A single-center experience with the NeuroPace RNS System: a review of techniques and potential problems. World Neurosurg 2015; 84 (03) 719-726
  • 15 Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol 2016; 12 (09) 513-525
  • 16 Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Elias-Vinas D, Gutierrez-Martinez J. Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients. J Healthc Eng 2018; 2018: 1624637
  • 17 Chowdhury A, Raza H, Meena YK, Dutta A, Prasad G. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation. J Neurosci Methods 2019; 312: 1-11
  • 18 Do AH, Wang PT, King CE, Chun SN, Nenadic Z. Brain-computer interface controlled robotic gait orthosis. J Neuroeng Rehabil 2013; 10 (01) 111
  • 19 Xu R, Jiang N, Mrachacz-Kersting N. et al. A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. IEEE Trans Biomed Eng 2014; 61 (07) 2092-2101
  • 20 King CE, Dave KR, Wang PT. et al. Performance assessment of a brain-computer interface driven hand orthosis. Ann Biomed Eng 2014; 42 (10) 2095-2105
  • 21 Ang KK, Guan C, Phua KS. et al. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng 2014; 7: 30
  • 22 Brumberg JS, Pitt KM, Mantie-Kozlowski A, Burnison JD. Brain–computer interfaces for augmentative and alternative communication: a tutorial. Am J Speech Lang Pathol 2018; 27 (01) 1-12
  • 23 Brumberg JS, Pitt KM, Burnison JD. A noninvasive brain-computer interface for real-time speech synthesis: the importance of multimodal feedback. IEEE Trans Neural Syst Rehabil Eng 2018; 26 (04) 874-881
  • 24 Guy V, Soriani M-H, Bruno M, Papadopoulo T, Desnuelle C, Clerc M. Brain computer interface with the P300 speller: usability for disabled people with amyotrophic lateral sclerosis. Ann Phys Rehabil Med 2018; 61 (01) 5-11
  • 25 Rabbani Q, Milsap G, Crone NE. The potential for a speech brain–computer interface using chronic electrocorticography. Neurotherapeutics 2019; 16 (01) 144-165
  • 26 Kong F, Sahadat MN, Ghovanloo M, Durgin GD. A stand-alone intraoral tongue-controlled computer interface for people with tetraplegia. IEEE Trans Biomed Circuits Syst 2019; 13 (05) 848-857
  • 27 Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I. Brain–computer interface spellers: a review. Brain Sci 2018; 8 (04) 57
  • 28 Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol 2006; 117 (03) 538-548
  • 29 Pandarinath C, Nuyujukian P, Blabe CH. et al. High performance communication by people with paralysis using an intracortical brain-computer interface. eLife 2017; 6: e18554
  • 30 Baniqued PDE, Stanyer EC, Awais M. et al. Brain–computer interface robotics for hand rehabilitation after stroke: a systematic review. J Neuroeng Rehabil 2021; 1-25
  • 31 Pichiorri F, Mattia D. Brain-computer interfaces in neurologic rehabilitation practice. Handb Clin Neurol 2020; 168: 101-116
  • 32 Huggins JE, Guger C, Ziat M. et al. Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future. Brain Comput Interfaces (Abingdon) 2017; 4 (1–2): 3-36
  • 33 Kapsalyamov A, Hussain S, Sharipov A, Jamwal P. Brain–computer interface and assist-as-needed model for upper limb robotic arm. Adv Mech Eng 2019; 11 (09) 1687814019875537
  • 34 Lin DJ, Finklestein SP, Cramer SC. New directions in treatments targeting stroke recovery. Stroke 2018; 49 (12) 3107-3114
  • 35 Micera S, Caleo M, Chisari C, Hummel FC, Pedrocchi A. Advanced neurotechnologies for the restoration of motor function. Neuron 2020; 105 (04) 604-620
  • 36 Lulé D, Noirhomme Q, Kleih SC. et al. Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin Neurophysiol 2013; 124 (01) 101-106
  • 37 Wang F, He Y, Qu J. et al. A brain-computer interface based on three-dimensional stereo stimuli for assisting clinical object recognition assessment in patients with disorders of consciousness. IEEE Trans Neural Syst Rehabil Eng 2019; 27 (03) 507-513
  • 38 Xiao J, Pan J, He Y. et al. Visual fixation assessment in patients with disorders of consciousness based on brain-computer interface. Neurosci Bull 2018; 34 (04) 679-690
  • 39 Xie Q, Pan J, Chen Y. et al. A gaze-independent audiovisual brain-computer Interface for detecting awareness of patients with disorders of consciousness. BMC Neurol 2018; 18 (01) 144
  • 40 Xiao J, Xie Q, Lin Q, Yu T, Yu R, Li Y. Assessment of visual pursuit in patients with disorders of consciousness based on a brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 2018; 26 (06) 1141-1151
  • 41 Chatelle C, Spencer CA, Cash SS, Hochberg LR, Edlow BL. Feasibility of an EEG-based brain-computer interface in the intensive care unit. Clin Neurophysiol 2018; 129 (08) 1519-1525
  • 42 Lech M, Kucewicz MT, Czyżewski A. Human computer interface for tracking eye movements improves assessment and diagnosis of patients with acquired brain injuries. Front Neurol 2019; 10: 6
  • 43 Carella T, De Silvestri M, Finedore M, Haniff I, Esmailbeigi H. Emotion recognition for brain machine interface: non-linear spectral analysis of EEG signals using empirical mode decomposition. Conf Proc IEEE Eng Med Biol Soc 2018; 2018: 223-226
  • 44 Brandman DM, Cash SS, Hochberg LR. Review: human intracortical recording and neural decoding for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 2017; 25 (10) 1687-1696
  • 45 Zapała D, Francuz P, Zapała E. et al. The impact of different visual feedbacks in user training on motor imagery control in BCI. Appl Psychophysiol Biofeedback 2018; 43 (01) 23-35
  • 46 Jeunet C, Lotte F, Batail J-M, Philip P, Micoulaud Franchi JA. Using recent BCI literature to deepen our understanding of clinical neurofeedback: a short review. Neuroscience 2018; 378: 225-233
  • 47 Schreuder M, Blankertz B, Tangermann M. A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PLoS One 2010; 5 (04) e9813
  • 48 Chatterjee A, Aggarwal V, Ramos A, Acharya S, Thakor NV. A brain-computer interface with vibrotactile biofeedback for haptic information. J Neuroeng Rehabil 2007; 4 (01) 40
  • 49 Lukoyanov M, Gordleeva SY, Pimashkin A. et al. The efficiency of the brain-computer interfaces based on motor imagery with tactile and visual feedback. Hum Physiol 2018; 44 (03) 280-288
  • 50 Sitaram R, Caria A, Veit R. et al. FMRI brain-computer interface: a tool for neuroscientific research and treatment. Comput Intell Neurosci 2007; 2007: 25487
  • 51 Coyle S, Ward T, Markham C, McDarby G. On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces. Physiol Meas 2004; 25 (04) 815-822
  • 52 Mellinger J, Schalk G, Braun C. et al. An MEG-based brain-computer interface (BCI). Neuroimage 2007; 36 (03) 581-593
  • 53 Corsi MC, Chavez M, Schwartz D. et al. Integrating EEG and MEG signals to improve motor imagery classification in brain-computer interface. Int J Neural Syst 2019; 29 (01) 1850014
  • 54 Deshpande G, Rangaprakash D, Oeding L, Cichocki A, Hu XP. A new generation of brain-computer interfaces driven by discovery of latent EEG-fMRI linkages using tensor decomposition. Front Neurosci 2017; 11: 246
  • 55 Hochberg LR, Donoghue JP. Sensors for brain-computer interfaces. IEEE Eng Med Biol Mag 2006; 25 (05) 32-38
  • 56 Rao RP. Towards neural co-processors for the brain: combining decoding and encoding in brain-computer interfaces. Curr Opin Neurobiol 2019; 55: 142-151
  • 57 Chiarelli AM, Croce P, Merla A, Zappasodi F. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification. J Neural Eng 2018; 15 (03) 036028
  • 58 Schwemmer MA, Skomrock ND, Sederberg PB. et al. Meeting brain-computer interface user performance expectations using a deep neural network decoding framework. Nat Med 2018; 24 (11) 1669-1676
  • 59 King CE, Wang PT, Mizuta M. et al. Noninvasive brain-computer interface driven hand orthosis. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 5786-5789
  • 60 Aflalo T, Kellis S, Klaes C. et al. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 2015; 348 (6237): 906-910
  • 61 Soekadar SR, Witkowski M, Vitiello N, Birbaumer N. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Biomed Tech (Berl) 2015; 60 (03) 199-205
  • 62 Bundy DT, Souders L, Baranyai K. et al. Contralesional brain-computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors. Stroke 2017; 48 (07) 1908-1915
  • 63 Frolov AA, Mokienko O, Lyukmanov R. et al. Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Front Neurosci 2017; 11: 400
  • 64 Mohebbi A, Engelsholm SK, Puthusserypady S, Kjaer TW, Thomsen CE, Sorensen HB. A brain computer interface for robust wheelchair control application based on pseudorandom code modulated visual evoked potential. Conf Proc IEEE Eng Med Biol Soc 2015; 2015: 602-605
  • 65 Abiyev RH, Akkaya N, Aytac E, Günsel I, Çağman A. Brain-computer interface for control of wheelchair using fuzzy neural networks. BioMed Res Int 2016; 2016: 9359868
  • 66 Yu Y, Zhou Z, Liu Y. et al. Self-paced operation of a wheelchair based on a hybrid brain-computer interface combining motor imagery and P300 potential. IEEE Trans Neural Syst Rehabil Eng 2017; 25 (12) 2516-2526
  • 67 Salisbury DB, Dahdah M, Driver S, Parsons TD, Richter KM. Virtual reality and brain computer interface in neurorehabilitation. Proc Bayl Univ Med Cent 2016; 29 (02) 124-127
  • 68 Coogan CG, He B. Brain-computer interface control in a virtual reality environment and applications for the internet of things. IEEE Access 2018; 6: 10840-10849
  • 69 Johnson NN, Carey J, Edelman BJ. et al. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke. J Neural Eng 2018; 15 (01) 016009
  • 70 Anumanchipalli GK, Chartier J, Chang EF. Speech synthesis from neural decoding of spoken sentences. Nature 2019; 568 (7753): 493-498
  • 71 Chartier J, Anumanchipalli GK, Johnson K, Chang EF. Encoding of articulatory kinematic trajectories in human speech sensorimotor cortex. Neuron 2018; 98 (05) 1042-1054.e4
  • 72 Cheng J, Jin J, Daly I. et al. Effect of a combination of flip and zooming stimuli on the performance of a visual brain-computer interface for spelling. Biomed Tech (Berl) 2019; 64 (01) 29-38
  • 73 Riccio A, Holz EM, Aricò P. et al. Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: electromyographic signals for error correction during a spelling task. Arch Phys Med Rehabil 2015; 96 (3, Suppl): S54-S61
  • 74 Kleih SC, Herweg A, Kaufmann T, Staiger-Sälzer P, Gerstner N, Kübler A. The WIN-speller: a new intuitive auditory brain-computer interface spelling application. Front Neurosci 2015; 9: 346
  • 75 Chen X, Wang Y, Nakanishi M, Gao X, Jung TP, Gao S. High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci U S A 2015; 112 (44) E6058-E6067
  • 76 Cecotti H. Spelling with non-invasive brain-computer interfaces--current and future trends. J Physiol Paris 2011; 105 (1-3): 106-114
  • 77 Bouton CE, Shaikhouni A, Annetta NV. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 2016; 533 (7602): 247-250
  • 78 Ajiboye AB, Willett FR, Young DR. et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 2017; 389 (10081): 1821-1830
  • 79 Sokunbi MO. Using real-time fMRI brain-computer interfacing to treat eating disorders. J Neurol Sci 2018; 388: 109-114
  • 80 Stoeckel LE, Garrison KA, Ghosh S. et al. Optimizing real time fMRI neurofeedback for therapeutic discovery and development. Neuroimage Clin 2014; 5: 245-255
  • 81 Ono T, Shindo K, Kawashima K. et al. Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front Neuroeng 2014; 7: 19
  • 82 Moghimi S, Kushki A, Guerguerian AM, Chau T. A review of EEG-based brain-computer interfaces as access pathways for individuals with severe disabilities. Assist Technol 2013; 25 (02) 99-110
  • 83 Mihara M, Hattori N, Hatakenaka M. et al. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study. Stroke 2013; 44 (04) 1091-1098
  • 84 Sitaram R, Ros T, Stoeckel L. et al. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 2017; 18 (02) 86-100
  • 85 Ramos-Murguialday A, Broetz D, Rea M. et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol 2013; 74 (01) 100-108
  • 86 Ietswaart M, Johnston M, Dijkerman HC. et al. Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy. Brain 2011; 134 (Pt 5): 1373-1386
  • 87 Wilson RD, Bryden AM, Kilgore KL. et al. Neuromodulation for functional electrical stimulation. Phys Med Rehabil Clin N Am 2019; 30 (02) 301-318
  • 88 Green AM, Kalaska JF. Learning to move machines with the mind. Trends Neurosci 2011; 34 (02) 61-75
  • 89 Taylor DM, Tillery SIH, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices. Science 2002; 296 (5574): 1829-1832
  • 90 Jarosiewicz B, Chase SM, Fraser GW, Velliste M, Kass RE, Schwartz AB. Functional network reorganization during learning in a brain-computer interface paradigm. Proc Natl Acad Sci U S A 2008; 105 (49) 19486-19491
  • 91 Shenoy KV, Carmena JM. Combining decoder design and neural adaptation in brain-machine interfaces. Neuron 2014; 84 (04) 665-680
  • 92 Hebb DO. The Organization of Behavior: A Neuropsychological Theory. New York:: J. Wiley; Chapman & Hall; 1949
  • 93 Miller KD. Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 1996; 17 (03) 371-374
  • 94 Jackson A, Zimmermann JB. Neural interfaces for the brain and spinal cord--restoring motor function. Nat Rev Neurol 2012; 8 (12) 690-699
  • 95 Serruya MD. Bottlenecks to clinical translation of direct brain-computer interfaces. Front Syst Neurosci 2014; 8: 226
  • 96 Bowsher K, Civillico EF, Coburn J. et al. Brain-computer interface devices for patients with paralysis and amputation: a meeting report. J Neural Eng 2016; 13 (02) 023001
  • 97 Implanted Brain-Computer Interface (BCI) Devices for Patients with Paralysis or Amputation—Non-Clinical Testing and Clinical Considerations. US Food and Drug Administration; 2019
  • 98 Implanted Brain-Computer Interface (BCI) Devices for Patients with Paralysis or Amputation—Non-Clinical Testing and Clinical Considerations Draft Guidance for Industry and Food and Drug Administration Staff. Food and Drug Administration; 2019
  • 99 Responsive Neurostimulation for the Treatment of Refractory Focal Epilepsy. Blue Cross Blue Shield of Massachusetts. Accessed May 15, 2019 at: https://www.bluecrossma.com/common/en_US/medical_policies/716%20Responsive%20Neurostimulation%20for%20the%20Treatment%20of%20Refractory%20Focal%20Epilepsy%20prn.pdf
  • 100 Prospectus: Amendment No. 3 to F-1 Registration ReWalk Robotics Ltd.; Securities and Exchange Commission. Published 2014. Accessed August 14, 2020 at: https://www.sec.gov/Archives/edgar/data/1607962/000119312514321636/d724635df1a.htm
  • 101 Biello P. N.H. Vet Becomes First Fitted With Two 'LUKE' Arms. New Hampshire Public Radio (NHPR) Web site. Published 2018. Accessed March, 2019 at: https://www.nhpr.org/post/nh-vet-becomes-first-fitted-two-luke-arms#stream/0
  • 102 Ortiz-Catalan M, Mastinu E, Sassu P, Aszmann O, Brånemark R. Self-contained neuromusculoskeletal arm prostheses. N Engl J Med 2020; 382 (18) 1732-1738
  • 103 Fritz H, Patzer D, Galen SS. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities. Disabil Rehabil 2019; 41 (05) 560-563
  • 104 Gardner AD, Potgieter J, Noble FK. A review of commercially available exoskeletons' capabilities. Paper presented at: 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP); 2017
  • 105 Bissolotti L, Nicoli F, Picozzi M. Domestic use of the exoskeleton for gait training in patients with spinal cord injuries: ethical dilemmas in clinical practice. Front Neurosci 2018; 12: 78
  • 106 ReWalk. Published 2019. Accessed August 14, 2020 at: https://rewalk.com/training-centers/
  • 107 Weber LM, Stein J. The use of robots in stroke rehabilitation: a narrative review. NeuroRehabilitation 2018; 43 (01) 99-110
  • 108 Rojek A, Mika A, Oleksy Ł, Stolarczyk A, Kielnar R. Effects of exoskeleton gait training on balance, load distribution, and functional status in stroke: a randomized controlled trial. Front Neurol 2020; 10: 1344
  • 109 Pratt AK, Chang JJ, Sederstrom NO. A fate worse than death: prognostication of devastating brain injury. Crit Care Med 2019; 47 (04) 591-598
  • 110 Slutzky MW, Flint RD. Physiological properties of brain-machine interface input signals. J Neurophysiol 2017; 118 (02) 1329-1343
  • 111 Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes in the brain. Nat Biomed Eng 2017; 1 (11) 862-877
  • 112 Ravikumar M, Sunil S, Black J. et al. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted intracortical microelectrodes. Biomaterials 2014; 35 (28) 8049-8064
  • 113 Wellman SM, Eles JR, Ludwig KA. et al. A materials roadmap to functional neural interface design. Adv Funct Mater 2018; 28 (12) 1701269
  • 114 Sillay KA, Ondoma S, Wingeier B. et al. Long-term surface electrode impedance recordings associated with gliosis for a closed-loop neurostimulation device. Ann Neurosci 2018; 25 (04) 289-298
  • 115 Parker RA, Davis TS, House PA, Normann RA, Greger B. The functional consequences of chronic, physiologically effective intracortical microstimulation. Prog Brain Res 2011; 194: 145-165
  • 116 Martini ML, Oermann EK, Opie NL, Panov F, Oxley T, Yaeger K. Sensor modalities for brain-computer interface technology: a comprehensive literature review. Neurosurgery 2020; 86 (02) E108-E117
  • 117 Thompson CH, Riggins TE, Patel PR, Chestek CA, Li W, Purcell E. Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. J Neural Eng 2020; 17 (02) 021001
  • 118 Das R, Moradi F, Heidari H. Biointegrated and wirelessly powered implantable brain devices: a review. IEEE Trans Biomed Circuits Syst 2020; 14 (02) 343-358
  • 119 Silva GA. A new frontier: the convergence of nanotechnology, brain machine interfaces, and artificial intelligence. Front Neurosci 2018; 12: 843
  • 120 Scaini D, Ballerini L. Nanomaterials at the neural interface. Curr Opin Neurobiol 2018; 50: 50-55
  • 121 Hong G, Yang X, Zhou T, Lieber CM. Mesh electronics: a new paradigm for tissue-like brain probes. Curr Opin Neurobiol 2018; 50: 33-41
  • 122 Letourneau S, Zewdie ET, Jadavji Z, Andersen J, Burkholder LM, Kirton A. Clinician awareness of brain computer interfaces: a Canadian national survey. J Neuroeng Rehabil 2020; 17 (01) 2
  • 123 Hendriks S, Grady C, Ramos KM. et al. Ethical challenges of risk, informed consent, and posttrial responsibilities in human research with neural devices: a review. JAMA Neurol 2019; 76 (12) 1506-1514
  • 124 Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine. Mayo Clin Proc 2012; 87 (03) 268-279
  • 125 Young MJ, Scheinberg E. The rise of crowdfunding for medical care: promises and perils. JAMA 2017; 317 (16) 1623-1624
  • 126 Judson TJ, Dhruva SS, Redberg RF. Evaluation of technologies approved for supplemental payments in the United States. BMJ 2019; 365: l2190
  • 127 Young MJ. Brain-computer interfaces and the philosophy of action. AJOB Neurosci 2020; 11 (01) 4-6
  • 128 Bernat JL. Medical decision making by patients in the locked-in syndrome. Neuroethics 2018; 13: 221-228
  • 129 Gilbert F, Cook M, O'Brien T, Illes J. Embodiment and estrangement: results from a first-in-human “intelligent BCI” trial. Sci Eng Ethics 2019; 25 (01) 83-96
  • 130 Agarwal A, Dowsley R, McKinney ND. et al. Protecting privacy of users in brain-computer interface applications. IEEE Trans Neural Syst Rehabil Eng 2019; 27 (08) 1546-1555
  • 131 Kögel J, Jox RJ, Friedrich O. What is it like to use a BCI? - Insights from an interview study with brain-computer interface users. BMC Med Ethics 2020; 21 (01) 2
  • 132 Greely HT, Grady C, Ramos KM. et al. Neuroethics guiding principles for the NIH BRAIN initiative. J Neurosci 2018; 38 (50) 10586-10588
  • 133 Shook JR, Giordano J. Neuroethics beyond normal. Camb Q Healthc Ethics 2016; 25 (01) 121-140
  • 134 Eaton ML, Illes J. Commercializing cognitive neurotechnology--the ethical terrain. Nat Biotechnol 2007; 25 (04) 393-397
  • 135 Klein E. Informed consent in implantable BCI research: identifying risks and exploring meaning. Sci Eng Ethics 2016; 22 (05) 1299-1317
  • 136 Nijboer F, Clausen J, Allison BZ, Haselager P. The Asilomar Survey: stakeholders' opinions on ethical issues related to brain-computer interfacing. Neuroethics 2013; 6: 541-578
  • 137 Young MJ. Bioenhancements and the telos of medicine. Med Health Care Philos 2015; 18 (04) 515-522
  • 138 Salles A, Bjaalie JG, Evers K. et al. The human brain project: responsible brain research for the benefit of society. Neuron 2019; 101 (03) 380-384