Semin Neurol 2021; 41(03): 227-238
DOI: 10.1055/s-0041-1725969
Review Article

Imaging Considerations in Spinal Cord Evaluation

Alice C. Shea
1   Department of Radiology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts
,
1   Department of Radiology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts
,
Liangge Hsu
1   Department of Radiology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts
› Author Affiliations

Abstract

Multiple diverse pathologies result in the clinical presentation of myelopathy. The preferred way to image the spinal cord depends on clinical history, anatomic site of interest, and patient issues limiting certain imaging modalities. This radiology-focused article discusses pertinent physiological considerations, reviews basic and newer imaging techniques, and examines several distinct disease entities in order to highlight the key role of imaging in the work-up of myelopathy.



Publication History

Article published online:
19 May 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 de Oliveira Vilaça C, Orsini M, Leite MAA. et al. Cervical spondylotic myelopathy: what the neurologist should know. Neurol Int 2016; 8 (04) 6330
  • 2 Roth CJ, Angevine PD, Aulino JM. et al. ACR appropriateness criteria myelopathy. J Am Coll Radiol 2016; 13 (01) 38-44
  • 3 Matsumae M, Sato O, Hirayama A. et al. Research into the physiology of cerebrospinal fluid reaches a new horizon: intimate exchange between cerebrospinal fluid and interstitial fluid may contribute to maintenance of homeostasis in the central nervous system. Neurol Med Chir (Tokyo) 2016; 56 (07) 416-441
  • 4 Frostell A, Hakim R, Thelin EP, Mattsson P, Svensson M. A review of the segmental diameter of the healthy human spinal cord. Front Neurol 2016; 7: 238
  • 5 Levey AI, Weiss H, Yu R, Wang H, Krumholz A. Seizures following myelography with iopamidol. Ann Neurol 1988; 23 (04) 397-399
  • 6 Campi A, Pontesilli S, Gerevini S, Scotti G. Comparison of MRI pulse sequences for investigation of lesions of the cervical spinal cord. Neuroradiology 2000; 42 (09) 669-675
  • 7 Bot JCJ, Barkhof F, Lycklama à Nijeholt GJ. et al. Comparison of a conventional cardiac-triggered dual spin-echo and a fast STIR sequence in detection of spinal cord lesions in multiple sclerosis. Eur Radiol 2000; 10 (05) 753-758
  • 8 Wheeler-Kingshott CAM, Hickman SJ, Parker GJM. et al. Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage 2002; 16 (01) 93-102
  • 9 Tanenbaum LN. Clinical applications of diffusion imaging in the spine. Magn Reson Imaging Clin N Am 2013; 21 (02) 299-320
  • 10 Katz BH, Quencer RM, Hinks RS. Comparison of gradient-recalled-echo and T2-weighted spin-echo pulse sequences in intramedullary spinal lesions. AJNR Am J Neuroradiol 1989; 10 (04) 815-822
  • 11 Wang M, Dai Y, Han Y, Haacke EM, Dai J, Shi D. Susceptibility weighted imaging in detecting hemorrhage in acute cervical spinal cord injury. Magn Reson Imaging 2011; 29 (03) 365-373
  • 12 Yang H, Qi YY, Gong MF. et al. CT angiography of cervical anterior spinal artery and anterior radicular artery: preliminary study on technology and its clinical application. Clin Imaging 2015; 39 (01) 32-36
  • 13 Pattany PM, Saraf-Lavi E, Bowen BC. MR angiography of the spine and spinal cord. Top Magn Reson Imaging 2003; 14 (06) 444-460
  • 14 Sheehy NP, Boyle GE, Meaney JFM. Normal anterior spinal arteries within the cervical region: high-spatial-resolution contrast-enhanced three-dimensional MR angiography. Radiology 2005; 236 (02) 637-641
  • 15 Bae YJ, Lee JW, Park KS. et al. Compressive myelopathy: magnetic resonance imaging findings simulating idiopathic acute transverse myelopathy. Skeletal Radiol 2013; 42 (06) 793-802
  • 16 Yukawa Y, Kato F, Yoshihara H, Yanase M, Ito K. MR T2 image classification in cervical compression myelopathy: predictor of surgical outcomes. Spine 2007; 32 (15) 1675-1678 , discussion 1679
  • 17 Morio Y, Teshima R, Nagashima H, Nawata K, Yamasaki D, Nanjo Y. Correlation between operative outcomes of cervical compression myelopathy and mri of the spinal cord. Spine 2001; 26 (11) 1238-1245
  • 18 De Smet E, Vanhoenacker FM, Parizel PM. Traumatic myelopathy: current concepts in imaging. Semin Musculoskelet Radiol 2014; 18 (03) 318-331
  • 19 Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics 2000; 20 (06) 1721-1749
  • 20 Fine MJ, Kricheff II, Freed D, Epstein FJ. Spinal cord ependymomas: MR imaging features. Radiology 1995; 197 (03) 655-658
  • 21 Houten JK, Cooper PR. Spinal cord astrocytomas: presentation, management and outcome. J Neurooncol 2000; 47 (03) 219-224
  • 22 Geibprasert S, Pereira V, Krings T. et al. Dural arteriovenous shunts: a new classification of craniospinal epidural venous anatomical bases and clinical correlations. Stroke 2008; 39 (10) 2783-2794
  • 23 Hurst RW, Kenyon LC, Lavi E, Raps EC, Marcotte P. Spinal dural arteriovenous fistula: the pathology of venous hypertensive myelopathy. Neurology 1995; 45 (07) 1309-1313
  • 24 Krings T, Geibprasert S. Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2009; 30 (04) 639-648
  • 25 Faig J, Busse O, Salbeck R. Vertebral body infarction as a confirmatory sign of spinal cord ischemic stroke: report of three cases and review of the literature. Stroke 1998; 29 (01) 239-243
  • 26 Sivadasan A, Alexander M, Patil AK, Mani S. Spectrum of clinicoradiological findings in spinal cord infarction: Report of three cases and review of the literature. Ann Indian Acad Neurol 2013; 16 (02) 190-193
  • 27 Bogdanov EI, Heiss JD, Mendelevich EG. The post-syrinx syndrome: stable central myelopathy and collapsed or absent syrinx. J Neurol 2006; 253 (06) 707-713
  • 28 Thorpe JW, Kidd D, Moseley IF. et al. Spinal MRI in patients with suspected multiple sclerosis and negative brain MRI. Brain 1996; 119 (Pt 3): 709-714
  • 29 Pandey S. Magnetic resonance imaging of the spinal cord in a man with tabes dorsalis. J Spinal Cord Med 2011; 34 (06) 609-611
  • 30 Ramalho J, Nunes RH, da Rocha AJ, Castillo M. Toxic and metabolic myelopathies. Semin Ultrasound CT MR 2016; 37 (05) 448-465
  • 31 Antonescu F, Adam M, Popa C, Tuţă S. A review of cervical spine MRI in ALS patients. J Med Life 2018; 11 (02) 123-127
  • 32 Maj E, Wójtowicz K. , Aleksandra, et al. Intramedullary spinal tumor-like lesions. Acta Radiol 2019; 60 (08) 994-1010
  • 33 Toma S, Shiozawa Z. Amyotrophic cervical myelopathy in adolescence. J Neurol Neurosurg Psychiatry 1995; 58 (01) 56-64
  • 34 Taber KH, Herrick RC, Weathers SW, Kumar AJ, Schomer DF, Hayman LA. Pitfalls and artifacts encountered in clinical MR imaging of the spine. Radiographics 1998; 18 (06) 1499-1521
  • 35 Bronskill MJ, McVeigh ER, Kucharczyk W, Henkelman RM. Syrinx-like artifacts on MR images of the spinal cord. Radiology 1988; 166 (02) 485-488
  • 36 Stroman PW, Wheeler-Kingshott C, Bacon M. et al. The current state-of-the-art of spinal cord imaging: methods. Neuroimage 2014; 84: 1070-1081
  • 37 Wheeler-Kingshott CA, Stroman PW, Schwab JM. et al. The current state-of-the-art of spinal cord imaging: applications. Neuroimage 2014; 84: 1082-1093
  • 38 Clark CA, Werring DJ. Diffusion tensor imaging in spinal cord: methods and applications - a review. NMR Biomed 2002; 15 (7–8): 578-586
  • 39 Ries M, Jones RA, Dousset V, Moonen CTW. Diffusion tensor MRI of the spinal cord. Magn Reson Med 2000; 44 (06) 884-892
  • 40 Stroman PW, Ryner LN. Functional MRI of motor and sensory activation in the human spinal cord. Magn Reson Imaging 2001; 19 (01) 27-32
  • 41 Conrad BN, Barry RL, Rogers BP. et al. Multiple sclerosis lesions affect intrinsic functional connectivity of the spinal cord. Brain 2018; 141 (06) 1650-1664
  • 42 Hock A, Henning A, Boesiger P, Kollias SS. (1)H-MR spectroscopy in the human spinal cord. AJNR Am J Neuroradiol 2013; 34 (09) 1682-1689
  • 43 Nandoe Tewarie RD, Yu J, Seidel J. et al. Positron emission tomography for serial imaging of the contused adult rat spinal cord. Mol Imaging 2010; 9 (02) 108-116
  • 44 Uchida K, Nakajima H, Takamura T. et al. Neurological improvement associated with resolution of irradiation-induced myelopathy: serial magnetic resonance imaging and positron emission tomography findings. J Neuroimaging 2009; 19 (03) 274-276
  • 45 Uchida K, Nakajima H, Yayama T. et al. High-resolution magnetic resonance imaging and 18FDG-PET findings of the cervical spinal cord before and after decompressive surgery in patients with compressive myelopathy. Spine 2009; 34 (11) 1185-1191
  • 46 Alonso-Ortiz E, Levesque IR, Pike GB. MRI-based myelin water imaging: a technical review. Magn Reson Med 2015; 73 (01) 70-81
  • 47 Wu Y, Alexander AL, Fleming JO, Duncan ID, Field AS. Myelin water fraction in human cervical spinal cord in vivo. J Comput Assist Tomogr 2006; 30 (02) 304-306
  • 48 Heath F, Hurley SA, Johansen-Berg H, Sampaio-Baptista C. Advances in noninvasive myelin imaging. Dev Neurobiol 2018; 78 (02) 136-151
  • 49 Brown RA, Narayanan S, Arnold DL. Imaging of repeated episodes of demyelination and remyelination in multiple sclerosis. Neuroimage Clin 2014; 6: 20-25