Semin Respir Crit Care Med 2021; 42(04): 567-586
DOI: 10.1055/s-0041-1730997
Review Article

Nontuberculous Mycobacteria

Shera Tan
1   Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore, Singapore
,
Shannon Kasperbauer
2   Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado
› Institutsangaben

Abstract

Nontuberculous mycobacteria (NTM) are ubiquitous in the environment and 193 species of NTM have been discovered thus far. NTM species vary in virulence from benign environmental organisms to difficult-to-treat human pathogens. Pulmonary infections remain the most common manifestation of NTM disease in humans and bronchiectasis continues to be a major risk factor for NTM pulmonary disease (NTM PD). This article will provide a useful introduction and framework for clinicians involved in the management of bronchiectasis and NTM. It includes an overview of the epidemiology, pathogenesis, diagnosis, and management of NTM PD. We will address the challenges faced in the diagnosis of NTM PD and the importance of subspeciation in guiding treatment and follow-up, especially in Mycobacterium abscessus infections. The treatment of both Mycobacterium avium complex and M. abscessus, the two most common NTM species known to cause disease, will be discussed in detail. Elements of the recent ATS/ERS/ESCMID/IDSA NTM guidelines published in 2020 will also be reviewed.



Publikationsverlauf

Artikel online veröffentlicht:
14. Juli 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Wolinsky E, Rynearson TK. Mycobacteria in soil and their relation to disease-associated strains. Am Rev Respir Dis 1968; 97 (06) 1032-1037
  • 2 Goslee S, Wolinsky E. Water as a source of potentially pathogenic mycobacteria. Am Rev Respir Dis 1976; 113 (03) 287-292
  • 3 Falkinham JO. Impact of human activities on the ecology of nontuberculous mycobacteria. Future Microbiol 2010; 5 (06) 951-960
  • 4 Mangione EJ, Huitt G, Lenaway D. et al. Nontuberculous mycobacterial disease following hot tub exposure. Emerg Infect Dis 2001; 7 (06) 1039-1042
  • 5 Euzéby JP. List of Prokaryotic names with Standing in Nomenclature. Assessed February 11, 2021 at: https://www.bacterio.net/genus/mycobacterium
  • 6 Falkinham III JO. Ecology of nontuberculous mycobacteria--where do human infections come from?. Semin Respir Crit Care Med 2013; 34 (01) 95-102
  • 7 Wallace Jr RJ, Iakhiaeva E, Williams MD. et al. Absence of Mycobacterium intracellulare and presence of Mycobacterium chimaera in household water and biofilm samples of patients in the United States with Mycobacterium avium complex respiratory disease. J Clin Microbiol 2013; 51 (06) 1747-1752
  • 8 Falkinham III JO. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis 2011; 17 (03) 419-424
  • 9 Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR. Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A 2009; 106 (38) 16393-16399
  • 10 Tortoli E. Clinical manifestations of nontuberculous mycobacteria infections. Clin Microbiol Infect 2009; 15 (10) 906-910
  • 11 Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 1995; 64: 29-63
  • 12 Falkinham III JO. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 2009; 107 (02) 356-367
  • 13 Runyon EH. Anonymous mycobacteria in pulmonary disease. Med Clin North Am 1959; 43 (01) 273-290
  • 14 Park JS, Choi J-I, Lim J-H. et al. The combination of real-time PCR and HPLC for the identification of non-tuberculous mycobacteria. Ann Lab Med 2013; 33 (05) 349-352
  • 15 Springer B, Stockman L, Teschner K, Roberts GD, Böttger EC. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol 1996; 34 (02) 296-303
  • 16 de Zwaan R, van Ingen J, van Soolingen D. Utility of rpoB gene sequencing for identification of nontuberculous mycobacteria in the Netherlands. J Clin Microbiol 2014; 52 (07) 2544-2551
  • 17 Roth A, Fischer M, Hamid ME, Michalke S, Ludwig W, Mauch H. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol 1998; 36 (01) 139-147
  • 18 McNabb A, Eisler D, Adie K. et al. Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. J Clin Microbiol 2004; 42 (07) 3000-3011
  • 19 Adékambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 2003; 41 (12) 5699-5708
  • 20 Jakko van Ingen. Microbiological diagnosis of nontuberculous mycobacterial pulmonary disease. Clin Chest Med 2015; 36 (01) 43-54
  • 21 Macheras E, Roux A-L, Bastian S. et al. Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains. J Clin Microbiol 2011; 49 (02) 491-499
  • 22 Zelazny AM, Root JM, Shea YR. et al. Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii . J Clin Microbiol 2009; 47 (07) 1985-1995
  • 23 Koh WJ, Jeon K, Lee NY. et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus . Am J Respir Crit Care Med 2011; 183 (03) 405-410
  • 24 National Notifiable Diseases Surveillance System (NNDSS). Centers for Disease Control and Prevention. Accessed February 23, 2020 at: https://wwwn.cdc.gov/nndss/conditions/notifiable/2020/
  • 25 O'Brien RJ, Geiter LJ, Snider Jr DE. The epidemiology of nontuberculous mycobacterial diseases in the United States. Results from a national survey. Am Rev Respir Dis 1987; 135 (05) 1007-1014
  • 26 Morimoto K, Hasegawa N, Izumi K. et al. A laboratory-based analysis of nontuberculous mycobacterial lung disease in Japan from 2012 to 2013. Ann Am Thorac Soc 2017; 14 (01) 49-56
  • 27 Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med 2012; 185 (08) 881-886
  • 28 Griffith DE, Aksamit T, Brown-Elliott BA. et al; ATS Mycobacterial Diseases Subcommittee, American Thoracic Society, Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175 (04) 367-416
  • 29 Winthrop KL, McNelley E, Kendall B. et al. Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: an emerging public health disease. Am J Respir Crit Care Med 2010; 182 (07) 977-982
  • 30 Prevots DR, Shaw PA, Strickland D. et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med 2010; 182 (07) 970-976
  • 31 Marras TK, Mendelson D, Marchand-Austin A, May K, Jamieson FB. Pulmonary nontuberculous mycobacterial disease, Ontario, Canada, 1998-2010. Emerg Infect Dis 2013; 19 (11) 1889-1891
  • 32 Marras TK, Chedore P, Ying AM, Jamieson F. Isolation prevalence of pulmonary non-tuberculous mycobacteria in Ontario, 1997 2003. Thorax 2007; 62 (08) 661-666
  • 33 Al Houqani M, Jamieson F, Chedore P, Mehta M, May K, Marras TK. Al- Houqani M. Isolation prevalence of pulmonary nontuberculous mycobacteria in Ontario in 2007. Can Respir J 2011; 18 (01) 19-24
  • 34 Pedro HdaS, Pereira MIF, Goloni MdoR, Ueki SY, Chimara E. Nontuberculous mycobacteria isolated in São José do Rio Preto, Brazil between 1996 and 2005. J Bras Pneumol 2008; 34 (11) 950-955
  • 35 Zamarioli LA, Coelho AGV, Pereira CM, Nascimento AC, Ueki SYM, Chimara E. Descriptive study of the frequency of nontuberculous mycobacteria in the Baixada Santista region of the state of São Paulo, Brazil. J Bras Pneumol 2008; 34 (08) 590-594
  • 36 Imperiale B, Zumárraga M, Gioffré A, Di Giulio B, Cataldi A, Morcillo N. Disease caused by non-tuberculous mycobacteria: diagnostic procedures and treatment evaluation in the North of Buenos Aires Province. Rev Argent Microbiol 2012; 44 (01) 3-9
  • 37 de Mello KG, Mello FCQ, Borga L. et al. Clinical and therapeutic features of pulmonary nontuberculous mycobacterial disease, Brazil, 1993-2011. Emerg Infect Dis 2013; 19 (03) 393-399
  • 38 Fusco da Costa AR, Falkinham III JO, Lopes ML. et al. Occurrence of nontuberculous mycobacterial pulmonary infection in an endemic area of tuberculosis. PLoS Negl Trop Dis 2013; 7 (07) e2340
  • 39 Dailloux M, Abalain ML, Laurain C. et al; French Mycobacteria Study Group. Respiratory infections associated with nontuberculous mycobacteria in non-HIV patients. Eur Respir J 2006; 28 (06) 1211-1215
  • 40 Henry MT, Inamdar L, O'Riordain D, Schweiger M, Watson JP. Nontuberculous mycobacteria in non-HIV patients: epidemiology, treatment and response. Eur Respir J 2004; 23 (05) 741-746
  • 41 van Ingen J, Bendien SA, de Lange WCM. et al. Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, the Netherlands. Thorax 2009; 64 (06) 502-506
  • 42 Kennedy MP, O'Connor TMO, Ryan C, Sheehan S, Cryan B, Bredin C. Nontuberculous mycobacteria: incidence in Southwest Ireland from 1987 to 2000. Respir Med 2003; 97 (03) 257-263
  • 43 Gerogianni I, Papala M, Kostikas K, Petinaki E, Gourgoulianis KI. Epidemiology and clinical significance of mycobacterial respiratory infections in Central Greece. Int J Tuberc Lung Dis 2008; 12 (07) 807-812
  • 44 Jankovic M, Samarzija M, Sabol I. et al. Geographical distribution and clinical relevance of non-tuberculous mycobacteria in Croatia. Int J Tuberc Lung Dis 2013; 17 (06) 836-841
  • 45 Marusić A, Katalinić-Janković V, Popović-Grle S. et al. Mycobacterium xenopi pulmonary disease - epidemiology and clinical features in non-immunocompromised patients. J Infect 2009; 58 (02) 108-112
  • 46 Prevots RD, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med 2015; 36 (01) 13-34
  • 47 Aliyu G, El-Kamary SS, Abimiku A. et al. Prevalence of non-tuberculous mycobacterial infections among tuberculosis suspects in Nigeria. PLoS One 2013; 8 (05) e63170
  • 48 Asiimwe BB, Bagyenzi GB, Ssengooba W. et al. Species and genotypic diversity of non-tuberculous mycobacteria isolated from children investigated for pulmonary tuberculosis in rural Uganda. BMC Infect Dis 2013; 13: 88
  • 49 Badoum G, Saleri N, Dembélé MS. et al. Failing a re-treatment regimen does not predict MDR/XDR tuberculosis: is “blind” treatment dangerous?. Eur Respir J 2011; 37 (05) 1283-1285
  • 50 Bicmen C, Coskun M, Gunduz AT, Senol G, Cirak AK, Tibet G. Nontuberculous mycobacteria isolated from pulmonary specimens between 2004 and 2009: causative agent or not?. New Microbiol 2010; 33 (04) 399-403
  • 51 Varghese B, Memish Z, Abuljadayel N, Al-Hakeem R, Alrabiah F, Al-Hajoj SA. Emergence of clinically relevant non-tuberculous mycobacterial infections in Saudi Arabia. PLoS Negl Trop Dis 2013; 7 (05) e2234
  • 52 Al-Mahruqi SH, van-Ingen J, Al-Busaidy S. et al. Clinical relevance of nontuberculous mycobacteria, Oman. Emerg Infect Dis 2009; 15 (02) 292-294
  • 53 Koh WJ, Kwon OJ, Jeon K. et al. Clinical significance of nontuberculous mycobacteria isolated from respiratory specimens in Korea. Chest 2006; 129 (02) 341-348
  • 54 Park YS, Lee C-H, Lee S-M. et al. Rapid increase of non-tuberculous mycobacterial lung diseases at a tertiary referral hospital in South Korea. Int J Tuberc Lung Dis 2010; 14 (08) 1069-1071
  • 55 Lee SK, Lee EJ, Kim SK, Chang J, Jeong SH, Kang YA. Changing epidemiology of nontuberculous mycobacterial lung disease in South Korea. Scand J Infect Dis 2012; 44 (10) 733-738
  • 56 Okumura M, Iwai K, Ogata H. et al. Clinical factors on cavitary and nodular bronchiectatic types in pulmonary Mycobacterium avium complex disease. Intern Med 2008; 47 (16) 1465-1472
  • 57 Hayashi M, Takayanagi N, Kanauchi T, Miyahara Y, Yanagisawa T, Sugita Y. Prognostic factors of 634 HIV-negative patients with Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2012; 185 (05) 575-583
  • 58 Wang CC, Lin MC, Liu JW, Wang YH. Nontuberculous mycobacterial lung disease in southern Taiwan. Chang Gung Med J 2009; 32 (05) 499-508
  • 59 Shu CC, Lee CH, Hsu CL. et al; TAMI Group. Clinical characteristics and prognosis of nontuberculous mycobacterial lung disease with different radiographic patterns. Lung 2011; 189 (06) 467-474
  • 60 Haverkort F. Australian Mycobacterium Reference Laboratory Network, Special Interest Group in Mycobacteria within the Australian Society for Microbiology. National atypical mycobacteria survey, 2000. Commun Dis Intell Q Rep 2003; 27 (02) 180-189
  • 61 Freeman J, Morris A, Blackmore T, Hammer D, Munroe S, McKnight L. Incidence of nontuberculous mycobacterial disease in New Zealand, 2004. N Z Med J 2007; 120 (1256): U2580
  • 62 Thomson RM. NTM working group at Queensland TB Control Centre and Queensland Mycobacterial Reference Laboratory. Changing epidemiology of pulmonary nontuberculous mycobacteria infections. Emerg Infect Dis 2010; 16 (10) 1576-1583
  • 63 Falkinham III JO. Environmental sources of nontuberculous mycobacteria. Clin Chest Med 2015; 36 (01) 35-41
  • 64 Steed KA, Falkinham III JO. Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare . Appl Environ Microbiol 2006; 72 (06) 4007-4011
  • 65 Bodmer T, Miltner E, Bermudez LE. Mycobacterium avium resists exposure to the acidic conditions of the stomach. FEMS Microbiol Lett 2000; 182 (01) 45-49
  • 66 Portaels F, Pattyn SR. Growth of mycobacteria in relation to the pH of the medium. Ann Microbiol (Paris) 1982; 133 (02) 213-221
  • 67 Schulze-Röbbecke R, Buchholtz K. Heat susceptibility of aquatic mycobacteria. Appl Environ Microbiol 1992; 58 (06) 1869-1873
  • 68 Taylor RH, Falkinham III JO, Norton CD, LeChevallier MW. Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium . Appl Environ Microbiol 2000; 66 (04) 1702-1705
  • 69 Norton CD, LeChevallier MW, Falkinham III JO. Survival of Mycobacterium avium in a model distribution system. Water Res 2004; 38 (06) 1457-1466
  • 70 Parker BC, Ford MA, Gruft H, Falkinham III JO. Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters. Am Rev Respir Dis 1983; 128 (04) 652-656
  • 71 Kim YM, Kim M, Kim SK. et al. Mycobacterial infections in coal workers' pneumoconiosis patients in South Korea. Scand J Infect Dis 2009; 41 (09) 656-662
  • 72 Rosenzweig DY. Pulmonary mycobacterial infections due to Mycobacterium intracellulare-avium complex. Clinical features and course in 100 consecutive cases. Chest 1979; 75 (02) 115-119
  • 73 Chan ED, Kaminska AM, Gill W. et al. Alpha-1-antitrypsin (AAT) anomalies are associated with lung disease due to rapidly growing mycobacteria and AAT inhibits Mycobacterium abscessus infection of macrophages. Scand J Infect Dis 2007; 39 (08) 690-696
  • 74 Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M. Primary ciliary dyskinesia. Diagnostic and phenotypic features. Am J Respir Crit Care 2004; 169: 459-467
  • 75 Witty LA, Tapson VF, Piantadosi CA. Isolation of mycobacteria in patients with pulmonary alveolar proteinosis. Medicine (Baltimore) 1994; 73 (02) 103-109
  • 76 Prince DS, Peterson DD, Steiner RM. et al. Infection with Mycobacterium avium complex in patients without predisposing conditions. N Engl J Med 1989; 321 (13) 863-868
  • 77 Chan ED, Iseman MD. Slender, older women appear to be more susceptible to nontuberculous mycobacterial lung disease. Gend Med 2010; 7 (01) 5-18
  • 78 Iseman MD, Buschman DL, Ackerson LM. Pectus excavatum and scoliosis. Thoracic anomalies associated with pulmonary disease caused by Mycobacterium avium complex. Am Rev Respir Dis 1991; 144 (04) 914-916
  • 79 Kim RD, Greenberg DE, Ehrmantraut ME. et al. Pulmonary nontuberculous mycobacterial disease: prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med 2008; 178 (10) 1066-1074
  • 80 Reich JM, Johnson RE. Mycobacterium avium complex pulmonary disease presenting as an isolated lingular or middle lobe pattern. The Lady Windermere syndrome. Chest 1992; 101 (06) 1605-1609
  • 81 Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998; 394 (6696): 897-901
  • 82 Kartalija M, Ovrutsky AR, Bryan CL. et al. Patients with nontuberculous mycobacterial lung disease exhibit unique body and immune phenotypes. Am J Respir Crit Care Med 2013; 187 (02) 197-205
  • 83 Judge DP, Dietz HC. Marfan's syndrome. Lancet 2005; 366 (9501): 1965-1976
  • 84 Champsi J, Young LS, Bermudez LE. Production of TNF-α, IL-6 and TGF-β, and expression of receptors for TNF-α and IL-6, during murine Mycobacterium avium infection. Immunology 1995; 84 (04) 549-554
  • 85 Denis M, Ghadirian E. Transforming growth factor beta (TGF-b1) plays a detrimental role in the progression of experimental Mycobacterium avium infection; in vivo and in vitro evidence. Microb Pathog 1991; 11 (05) 367-372
  • 86 Thomson RM, Armstrong JG, Looke DF. Gastroesophageal reflux disease, acid suppression, and Mycobacterium avium complex pulmonary disease. Chest 2007; 131 (04) 1166-1172
  • 87 Al-Momani H, Perry A, Jones R. et al. Nontuberculous mycobacteria in gastrostomy fed patients with cystic fibrosis. Sci Rep 2017; 7: 46546
  • 88 Dawrs SN, Kautz M, Chan ED, Honda JR. Mycobacterium abscessus and gastroesophageal reflux: an in vitro study. Am J Respir Crit Care Med 2020; 202 (03) 466-469
  • 89 Koh WJ, Lee JH, Kwon YS. et al. Prevalence of gastroesophageal reflux disease in patients with nontuberculous mycobacterial lung disease. Chest 2007; 131 (06) 1825-1830
  • 90 Hojo M, Iikura M, Hirano S, Sugiyama H, Kobayashi N, Kudo K. Increased risk of nontuberculous mycobacterial infection in asthmatic patients using long-term inhaled corticosteroid therapy. Respirology 2012; 17 (01) 185-190
  • 91 Brode SK, Campitelli MA, Kwong JC. et al. The risk of mycobacterial infections associated with inhaled corticosteroid use. Eur Respir J 2017; 50 (03) 1700037
  • 92 Winthrop KL, Baxter R, Liu L. et al. Mycobacterial diseases and antitumour necrosis factor therapy in USA. Ann Rheum Dis 2013; 72 (01) 37-42
  • 93 Fujita J, Ohtsuki Y, Suemitsu I. et al. Pathological and radiological changes in resected lung specimens in Mycobacterium avium intracellulare complex disease. Eur Respir J 1999; 13 (03) 535-540
  • 94 Malcolm KC, Nichols EM, Caceres SM. et al. Mycobacterium abscessus induces a limited pattern of neutrophil activation that promotes pathogen survival. PLoS One 2013; 8 (02) e57402
  • 95 Daley CL, Iaccarino JM, Lange C. et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J 2020; 56 (01) 200535
  • 96 Hwang JA, Kim S, Jo K-W, Shim TS. Natural history of Mycobacterium avium complex lung disease in untreated patients with stable course. Eur Respir J 2017; 49 (03) 1600537
  • 97 Moon SM, Jhun BW, Baek S-Y. et al. Long-term natural history of non-cavitary nodular bronchiectatic nontuberculous mycobacterial pulmonary disease. Respir Med 2019; 151: 1-7
  • 98 Alisjahbana B, van Crevel R, Danusantoso H. et al. Better patient instruction for sputum sampling can improve microscopic tuberculosis diagnosis. Int J Tuberc Lung Dis 2005; 9 (07) 814-817
  • 99 Banda HT, Harries AD, Boeree MJ, Nyirenda TE, Banerjee A, Salaniponi FM. Viability of stored sputum specimens for smear microscopy and culture. Int J Tuberc Lung Dis 2000; 4 (03) 272-274
  • 100 Tsukamura M. Diagnosis of disease caused by Mycobacterium avium complex. Chest 1991; 99 (03) 667-669
  • 101 Somoskövi A, Hotaling JE, Fitzgerald M, O'Donnell D, Parsons LM, Salfinger M. Lessons from a proficiency testing event for acid-fast microscopy. Chest 2001; 120 (01) 250-257
  • 102 Cruciani M, Scarparo C, Malena M, Bosco O, Serpelloni G, Mengoli C. Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria. J Clin Microbiol 2004; 42 (05) 2321-2325
  • 103 Realini L, De Ridder K, Hirschel B, Portaels F. Blood and charcoal added to acidified agar media promote the growth of Mycobacterium genavense . Diagn Microbiol Infect Dis 1999; 34 (01) 45-50
  • 104 Saubolle MA, Kiehn TE, White MH, Rudinsky MF, Armstrong D. Mycobacterium haemophilum: microbiology and expanding clinical and geographic spectra of disease in humans. Clin Microbiol Rev 1996; 9 (04) 435-447
  • 105 Huh HJ, Kim S-Y, Shim HJ. et al. GenoType NTM-DR performance evaluation for identification of Mycobacterium avium complex and Mycobacterium abscessus and determination of clarithromycin and amikacin resistance. J Clin Microbiol 2019; 57 (08) e00516-e00519
  • 106 CLSI. Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp, and Other Aerobic Actinomycetes. Wayne, PA: Clinical and Laboratory Standards Institute; 2018
  • 107 CLSI. Susceptibility Testing of Mycobacteria, Nocardia spp, and Other Aerobic Actinomycetes. Wayne, PA: Clinical and Laboratory Standards Institute; 2018
  • 108 Lee AL, Burge A, Holland AE. Airway clearance techniques for bronchiectasis. (review) Cochrane Database Syst Rev 2013; (05) CD008351
  • 109 Hill AT, Sullivan AL, Chalmers JD. et al. British Thoracic Society Guideline for bronchiectasis in adults. Thorax 2019; 74 (Suppl. 01) 1-69
  • 110 Nicolini A, Cardini F, Landucci N, Lanata S, Ferrari-Bravo M, Barlascini C. Effectiveness of treatment with high-frequency chest wall oscillation in patients with bronchiectasis. BMC Pulm Med 2013; 13: 21
  • 111 Robinson M, Hemming AL, Regnis JA. et al. Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis. Thorax 1997; 52 (10) 900-903
  • 112 Katz PO, Gerson LB, Vela MF. Guidelines for the diagnosis and management of gastroesophageal reflux disease. Am J Gastroenterol 2013; 108 (03) 308-328 , quiz 329
  • 113 Cranley JP, Achkar E, Fleshler B. Abnormal lower esophageal sphincter pressure responses in patients with orange juice-induced heartburn. Am J Gastroenterol 1986; 81 (02) 104-106
  • 114 Feldman M, Barnett C. Relationships between the acidity and osmolality of popular beverages and reported postprandial heartburn. Gastroenterology 1995; 108 (01) 125-131
  • 115 Boekema PJ, Samsom M, Smout AJ. Effect of coffee on gastro-oesophageal reflux in patients with reflux disease and healthy controls. Eur J Gastroenterol Hepatol 1999; 11 (11) 1271-1276
  • 116 Becker DJ, Sinclair J, Castell DO, Wu WC. A comparison of high and low fat meals on postprandial esophageal acid exposure. Am J Gastroenterol 1989; 84 (07) 782-786
  • 117 Bulat R, Fachnie E, Chauhan U, Chen Y, Tougas G. Lack of effect of spearmint on lower oesophageal sphincter function and acid reflux in healthy volunteers. Aliment Pharmacol Ther 1999; 13 (06) 805-812
  • 118 Egelund EF, Fennelly KP, Peloquin CA. Medications and monitoring in nontuberculous mycobacteria infections. Clin Chest Med 2015; 36 (01) 55-66
  • 119 Peloquin C. The role of therapeutic drug monitoring in mycobacterial infections. Microbiol Spectr 2017; 5 (01) TNM17
  • 120 Griffith DE, Adjemian J, Brown-Elliott BA. et al. Semiquantitative culture analysis during therapy for Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2015; 192 (06) 754-760
  • 121 Sassi M, Drancourt M. Genome analysis reveals three genomospecies in Mycobacterium abscessus . BMC Genomics 2014; 15: 359
  • 122 Jeon K, Kwon OJ, Lee NY. et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med 2009; 180 (09) 896-902
  • 123 Greendyke R, Byrd TF. Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria. Antimicrob Chemother 2014; 69 (07) 1945-1953
  • 124 Shen G-H, Wu B-D, Hu S-T, Lin C-F, Wu K-M, Chen J-H. High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int J Antimicrob Agents 2010; 35 (04) 400-404
  • 125 van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother 2012; 56 (12) 6324-6327
  • 126 Wallace Jr RJ, Meier A, Brown BA. et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus . Antimicrob Agents Chemother 1996; 40 (07) 1676-1681
  • 127 Nash KA, Zhang Y, Brown-Elliott BA, Wallace Jr RJ. Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum . J Antimicrob Chemother 2005; 55 (02) 170-177
  • 128 Nash KA, Brown-Elliott BA, Wallace Jr RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae . Antimicrob Agents Chemother 2009; 53 (04) 1367-1376
  • 129 Choi G-E, Shin SJ, Won C-J. et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med 2012; 186 (09) 917-925
  • 130 Harada T, Akiyama Y, Kurashima A. et al. Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. J Clin Microbiol 2012; 50 (11) 3556-3561
  • 131 Kasperbauer SH, De Groote MA. The treatment of rapidly growing mycobacterial infections. Clin Chest Med 2015; 36 (01) 67-78
  • 132 Griffith DE, Girard WM, Wallace Jr RJ. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients. Am Rev Respir Dis 1993; 147 (05) 1271-1278
  • 133 Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin Infect Dis 2011; 52 (05) 565-571
  • 134 Mitchell JD. Surgical approach to pulmonary nontuberculous mycobacterial infections. Clin Chest Med 2015; 36 (01) 117-122
  • 135 Broda A, Jebbari H, Beaton K, Mitchell S, Drobniewski F. Comparative drug resistance of Mycobacterium abscessus and M. chelonae isolates from patients with and without cystic fibrosis in the United Kingdom. J Clin Microbiol 2013; 51 (01) 217-223
  • 136 Swenson JM, Wallace Jr RJ, Silcox VA, Thornsberry C. Antimicrobial susceptibility of five subgroups of Mycobacterium fortuitum and Mycobacterium chelonae . Antimicrob Agents Chemother 1985; 28 (06) 807-811
  • 137 Stone MS, Wallace Jr RJ, Swenson JM, Thornsberry C, Christensen LA. Agar disk elution method for susceptibility testing of Mycobacterium marinum and Mycobacterium fortuitum complex to sulfonamides and antibiotics. Antimicrob Agents Chemother 1983; 24 (04) 486-493
  • 138 Wallace Jr RJ, Brown BA, Onyi GO. Susceptibilities of Mycobacterium fortuitum biovar. fortuitum and the two subgroups of Mycobacterium chelonae to imipenem, cefmetazole, cefoxitin, and amoxicillin-clavulanic acid. Antimicrob Agents Chemother 1991; 35 (04) 773-775
  • 139 Kim HS, Lee KS, Koh WJ. et al. Serial CT findings of Mycobacterium massiliense pulmonary disease compared with Mycobacterium abscessus disease after treatment with antibiotic therapy. Radiology 2012; 263 (01) 260-270
  • 140 Inoue T, Tsunoda A, Nishimoto E. et al. Successful use of linezolid for refractory Mycobacterium abscessus infection: a case report. Respir Med Case Rep 2017; 23: 43-45
  • 141 Wallace Jr RJ, Brown-Elliott BA, Ward SC, Crist CJ, Mann LB, Wilson RW. Activities of linezolid against rapidly growing mycobacteria. Antimicrob Agents Chemother 2001; 45 (03) 764-767
  • 142 Ntziora F, Falagas ME. Linezolid for the treatment of patients with [corrected] mycobacterial infections [corrected] a systematic review. Int J Tuberc Lung Dis 2007; 11 (06) 606-611
  • 143 Winthrop KL, Ku JH, Marras TK. et al. The tolerability of linezolid in the treatment of nontuberculous mycobacterial disease. Eur Respir J 2015; 45 (04) 1177-1179
  • 144 Brown-Elliott BA, Wallace Jr RJ. In vitro susceptibility testing of Tedizolid against nontuberculous mycobacteria. J Clin Microbiol 2017; 55 (06) 1747-1754
  • 145 Kanafani ZA, Corey GR. Tedizolid (TR-701): a new oxazolidinone with enhanced potency. Expert Opin Investig Drugs 2012; 21 (04) 515-522
  • 146 Wallace Jr RJ, Dukart G, Brown-Elliott BA, Griffith DE, Scerpella EG, Marshall B. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother 2014; 69 (07) 1945-1953
  • 147 Kaushik A, Ammerman NC, Martins O, Parrish NM, Nuermberger EL. In vitro activity of new tetracycline analogs Omadacycline and Eravacycline against drug-resistant clinical isolates of Mycobacterium abscessus . Antimicrob Agents Chemother 2019; 63 (06) e00470-e19
  • 148 Gotfried MH, Horn K, Garrity-Ryan L. et al. Comparison of omadacycline and tigecycline pharmacokinetics in the plasma, epithelial lining fluid, and alveolar cells of healthy subjects. Antimicrob Agents Chemother 2017; 61 (09) e01135-e17
  • 149 Shoen C, Benaroch D, Sklaney M, Cynamon M. In vitro activities of omadacycline against rapidly growing mycobacteria. Antimicrob Agents Chemother 2019; 63 (05) e02522-e18
  • 150 Story-Roller E, Maggioncalda EC, Lamichhane G. Select β-lactam combinations exhibit synergy against Mycobacterium abscessus in vitro. Antimicrob Agents Chemother 2019; 63 (04) e02613-e02618
  • 151 Pandey R, Chen L, Manca C. et al. Dual β-lactam combinations highly active against Mycobacterium abscessus complex in vitro. MBio 2019; 10 (01) e02895-e18
  • 152 Dedrick RM, Guerrero-Bustamante CA, Garlena RA. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus . Nat Med 2019; 25 (05) 730-733
  • 153 Lea B, Gur M, Ashkenazi M. et al. Pilot study to test inhaled nitric oxide in cystic fibrosis patients with refractory Mycobacterium abscessus lung infection. J Cyst Fibros 2020; 19 (02) 225-231
  • 154 Scott JP, Ji Y, Kannan M, Wylam ME. Inhaled granulocyte-macrophage colony-stimulating factor for Mycobacterium abscessus in cystic fibrosis. Eur Respir J 2018; 51 (04) 1702127
  • 155 van Ingen J, Turenne CY, Tortoli E, Wallace Jr RJ, Brown-Elliott BA. A definition of the Mycobacterium avium complex for taxonomical and clinical purposes, a review. Int J Syst Evol Microbiol 2018; 68 (11) 3666-3677
  • 156 Koh WJ, Jeong B-H, Jeon K. et al. Clinical significance of the differentiation between Mycobacterium avium and Mycobacterium intracellulare in M. avium complex lung disease. Chest 2012; 142 (06) 1482-1488
  • 157 Yamori S, Tsukamura M. Comparison of prognosis of pulmonary diseases caused by Mycobacterium avium and by Mycobacterium intracellulare . Chest 1992; 102 (01) 89-90
  • 158 Maesaki S, Kohno S, Koga H, Miyazaki Y, Kaku M. A clinical comparison between Mycobacterium avium and Mycobacterium intracellulare infections. Chest 1993; 104 (05) 1408-1411
  • 159 Sweet L, Singh PP, Azad AK, Rajaram MVS, Schlesinger LS, Schorey JS. Mannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids. Infect Immun 2010; 78 (01) 518-526
  • 160 Takegaki Y. Effect of serotype specific glycopeptidolipid (GPL) isolated from Mycobacterium avium complex (MAC) on phagocytosis and phagosome-lysosome fusion of human peripheral blood monocytes. [in Japanese]. Kekkaku 2000; 75 (01) 9-18
  • 161 Turenne CY, Wallace Jr R, Behr MA. Mycobacterium avium in the postgenomic era. Clin Microbiol Rev 2007; 20 (02) 205-229
  • 162 Yamazaki Y, Danelishvili L, Wu M, Macnab M, Bermudez LE. Mycobacterium avium genes associated with the ability to form a biofilm. Appl Environ Microbiol 2006; 72 (01) 819-825
  • 163 Belisle JT, Klaczkiewicz K, Brennan PJ, Jacobs Jr WR, Inamine JM. Rough morphological variants of Mycobacterium avium. Characterization of genomic deletions resulting in the loss of glycopeptidolipid expression. J Biol Chem 1993; 268 (14) 10517-10523
  • 164 Ito Y, Hirai T, Maekawa K. et al. Predictors of 5-year mortality in pulmonary Mycobacterium avium-intracellulare complex disease. Int J Tuberc Lung Dis 2012; 16 (03) 408-414
  • 165 Wallace Jr RJ, Brown-Elliott BA, McNulty S. et al. Macrolide/Azalide therapy for nodular/bronchiectatic mycobacterium avium complex lung disease. Chest 2014; 146 (02) 276-282
  • 166 Wallace Jr RJ, Brown BA, Griffith DE, Girard WM, Murphy DT. Clarithromycin regimens for pulmonary Mycobacterium avium complex. The first 50 patients. Am J Respir Crit Care Med 1996; 153 (6, Pt 1): 1766-1772
  • 167 Tanaka E, Kimoto T, Tsuyuguchi K. et al. Effect of clarithromycin regimen for Mycobacterium avium complex pulmonary disease. Am J Respir Crit Care Med 1999; 160 (03) 866-872
  • 168 Griffith DE, Brown-Elliott BA, Langsjoen B. et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2006; 174 (08) 928-934
  • 169 Zuckerman JM, Qamar F, Bono BR. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med Clin North Am 2011; 95 (04) 761-791
  • 170 Miwa S, Shirai M, Toyoshima M. et al. Efficacy of clarithromycin and ethambutol for Mycobacterium avium complex pulmonary disease. A preliminary study. Ann Am Thorac Soc 2014; 11 (01) 23-29
  • 171 Peloquin CA, Berning SE, Nitta AT. et al. Aminoglycoside toxicity: daily versus thrice-weekly dosing for treatment of mycobacterial diseases. Clin Infect Dis 2004; 38 (11) 1538-1544
  • 172 Koh WJ, Moon SM, Kim S-Y. et al. Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur Respir J 2017; 50 (03) 1602503
  • 173 Lee BY, Kim S, Hong Y. et al. Risk factors for recurrence after successful treatment of Mycobacterium avium complex lung disease. Antimicrob Agents Chemother 2015; 59 (06) 2972-2977
  • 174 Kwak N, Park J, Kim E, Lee C-H, Han SK, Yim J-J. Treatment outcomes of Mycobacterium avium complex lung disease: a systematic review and meta-analysis. Clin Infect Dis 2017; 65 (07) 1077-1084
  • 175 Gochi M, Takayanagi N, Kanauchi T, Ishiguro T, Yanagisawa T, Sugita Y. Retrospective study of the predictors of mortality and radiographic deterioration in 782 patients with nodular/bronchiectatic Mycobacterium avium complex lung disease. BMJ Open 2015; 5 (08) e008058
  • 176 Moon SM, Park HY, Kim S-Y. et al. Clinical characteristics, treatment outcomes, and resistance mutations associated with macrolide-resistant Mycobacterium avium complex lung disease. Antimicrob Agents Chemother 2016; 60 (11) 6758-6765
  • 177 Morimoto K, Namkoong H, Hasegawa N. et al; Nontuberculous Mycobacteriosis Japan Research Consortium. Macrolide-resistant Mycobacterium avium complex lung disease: analysis of 102 consecutive cases. Ann Am Thorac Soc 2016; 13 (11) 1904-1911
  • 178 van Ingen J, Aksamit T, Andrejak C. et al; For NTM-NET. Treatment outcome definitions in nontuberculous mycobacterial pulmonary disease: an NTM-NET consensus statement. Eur Respir J 2018; 51 (03) 1800170
  • 179 Moon SM, Jhun BW, Daley CL, Koh WJ. Unresolved issues in treatment outcome definitions for nontuberculous mycobacterial pulmonary disease. Eur Respir J 2019; 53 (05) 1801636
  • 180 Olivier KN, Griffith DE, Eagle G. et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med 2017; 195 (06) 814-823
  • 181 Griffith DE, Eagle G, Thomson R. et al; CONVERT Study Group. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT): a prospective, open-label, randomized study. Am J Respir Crit Care Med 2018; 198 (12) 1559-1569
  • 182 Rose SJ, Neville ME, Gupta R, Bermudez LE. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS One 2014; 9 (09) e108703
  • 183 Malinin V, Neville M, Eagle G, Gupta R, Perkins WR. Pulmonary deposition and elimination of liposomal amikacin for inhalation and effect on macrophage function after administration in rats. Antimicrob Agents Chemother 2016; 60 (11) 6540-6549
  • 184 Zhang J, Leifer F, Rose S. et al. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol 2018; 9: 915
  • 185 Reddy VM, Nadadhur G, Daneluzzi D, O'Sullivan JF, Gangadharam PRJ. Antituberculosis activities of clofazimine and its new analogs B4154 and B4157. Antimicrob Agents Chemother 1996; 40 (03) 633-636
  • 186 Jarand J, Davis JP, Cowie RL, Field SK, Fisher DA. Long-term follow-up of Mycobacterium avium complex lung disease in patients treated with regimens including Clofazimine and/or Rifampin. Chest 2016; 149 (05) 1285-1293
  • 187 Martiniano SL, Wagner BD, Levin A, Nick JA, Sagel SD, Daley CL. Safety and effectiveness of Clofazimine for primary and refractory nontuberculous mycobacterial infection. Chest 2017; 152 (04) 800-809
  • 188 Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs 2014; 74 (08) 839-854
  • 189 Garrelts JC. Clofazimine: a review of its use in leprosy and Mycobacterium avium complex infection. DICP 1991; 25 (05) 525-531
  • 190 Matteelli A, Carvalho ACC, Dooley KE, Kritski A. TMC207: the first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol 2010; 5 (06) 849-858
  • 191 Pang Y, Zheng H, Tan Y, Song Y, Zhao Y. In vitro activity of Bedaquiline against nontuberculous mycobacteria in China. Antimicrob Agents Chemother 2017; 61 (05) e02627-e16
  • 192 Philley JV, Wallace Jr RJ, Benwill JL. et al. Preliminary results of Bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest 2015; 148 (02) 499-506
  • 193 Keagy BA, Lores ME, Starek PJ, Murray GF, Lucas CL, Wilcox BR. Elective pulmonary lobectomy: factors associated with morbidity and operative mortality. Ann Thorac Surg 1985; 40 (04) 349-352
  • 194 Olsen GN, Block AJ, Swenson EW, Castle JR, Wynne JW. Pulmonary function evaluation of the lung resection candidate: a prospective study. Am Rev Respir Dis 1975; 111 (04) 379-387
  • 195 Armstrong P, Congleton J, Fountain SW. et al. British Thoracic Society, Society of Cardiothoracic Surgeons of Great Britain and Ireland Working Party. BTS guidelines: guidelines on the selection of patients with lung cancer for surgery. Thorax 2001; 56 (02) 89
  • 196 Bianchi RCG, de Souza JN, Giaciani CdeA, Höehr NF, Toro IFC. Prognostic factors for complications following pulmonary resection: pre-albumin analysis, time on mechanical ventilation, and other factors. J Bras Pneumol 2006; 32 (06) 489-494
  • 197 Williams T, Gulack BC, Kim S, Fernandez FG, Ferguson MK. Operative risk for major lung resection increases at extremes of body mass index. Ann Thorac Surg 2017; 103 (01) 296-302
  • 198 Flores RM, Park BJ, Dycoco J. et al. Lobectomy by video-assisted thoracic surgery (VATS) versus thoracotomy for lung cancer. J Thorac Cardiovasc Surg 2009; 138 (01) 11-18
  • 199 Villamizar NR, Darrabie MD, Burfeind WR. et al. Thoracoscopic lobectomy is associated with lower morbidity compared with thoracotomy. J Thorac Cardiovasc Surg 2009; 138 (02) 419-425
  • 200 Whitson BA, Groth SS, Duval SJ, Swanson SJ, Maddaus MA. Surgery for early-stage non-small cell lung cancer: a systematic review of the video-assisted thoracoscopic surgery versus thoracotomy approaches to lobectomy. Ann Thorac Surg 2008; 86 (06) 2008-2016 , discussion 2016–2018
  • 201 Demmy TL, Nwogu C. Is video-assisted thoracic surgery lobectomy better? Quality of life considerations. Ann Thorac Surg 2008; 85 (02) S719-S728
  • 202 Kumar A, Asaf BB. Robotic thoracic surgery: the state of the art. J Minim Access Surg 2015; 11 (01) 60-67
  • 203 Eloesser L. An operation for tuberculous empyema. Surg Gynecol Obstet 1935; 60: 1096-1097
  • 204 Corpe RF. Surgical management of pulmonary disease due to Mycobacterium avium-intracellulare . Rev Infect Dis 1981; 3 (05) 1064-1067
  • 205 Nelson KG, Griffith DE, Brown BA, Wallace Jr RJ. Results of operation in Mycobacterium avium-intracellulare lung disease. Ann Thorac Surg 1998; 66 (02) 325-330
  • 206 Watanabe M, Hasegawa N, Ishizaka A. et al. Early pulmonary resection for Mycobacterium avium complex lung disease treated with macrolides and quinolones. Ann Thorac Surg 2006; 81 (06) 2026-2030
  • 207 Mitchell JD, Bishop A, Cafaro A, Weyant MJ, Pomerantz M. Anatomic lung resection for nontuberculous mycobacterial disease. Ann Thorac Surg 2008; 85 (06) 1887-1892 , discussion 1892–1893
  • 208 Yu JA, Pomerantz M, Bishop A, Weyant MJ, Mitchell JD. Lady Windermere revisited: treatment with thoracoscopic lobectomy/segmentectomy for right middle lobe and lingular bronchiectasis associated with non-tuberculous mycobacterial disease. Eur J Cardiothorac Surg 2011; 40 (03) 671-675
  • 209 Shiraishi Y, Katsuragi N, Kita H, Hyogotani A, Saito MH, Shimoda K. Adjuvant surgical treatment of nontuberculous mycobacterial lung disease. Ann Thorac Surg 2013; 96 (01) 287-291
  • 210 Sakane T, Matsuoka K, Kumata S. et al. The outcomes of anatomical lung resection for nontuberculous mycobacterial lung disease. J Thorac Dis 2018; 10 (02) 954-962
  • 211 Huitt GA, Daley CL, Nontuberculous Mycobacteria. Clin Chest Med 2015;36(01):i. Accessed June 14 at: https://www.sciencedirect.com/science/article/pii/S0272523115000040