Semin intervent Radiol 2021; 38(04): 405-411
DOI: 10.1055/s-0041-1732323
Review Article

Standard Radiation Dosimetry Models: What Interventional Radiologists Need to Know

Linzi Arndt Webster
1   Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University School of Medicine, Atlanta, Georgia
,
Alexander Villalobos
1   Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University School of Medicine, Atlanta, Georgia
,
Bill S. Majdalany
1   Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University School of Medicine, Atlanta, Georgia
,
Zachary L. Bercu
1   Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University School of Medicine, Atlanta, Georgia
,
Ripal T. Gandhi
2   Miami Cardiac and Vascular Institute, Miami Cancer Institute, Miami, FL
,
Nima Kokabi
1   Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University School of Medicine, Atlanta, Georgia
› Author Affiliations

Abstract

Thoughtful and accurate dosimetry is critical to obtain the safest and most efficacious yttrium-90 (Y90) radioembolization of primary and secondary liver cancers. Three dosimetry models are currently used in clinical practice, namely, body surface area model, medical internal radiation dose model, and the partition model. The objective of this review is to briefly outline the history behind Y90 dosimetry and the difference between the aforementioned models. When applying these three models to a single case, the differences between them are further demonstrated. Each dosimetry model in clinical practice has its own benefits and limitations. Therefore, it is incumbent upon practicing interventional radiologists to be aware of these differences to optimize treatment outcomes for their patients.



Publication History

Article published online:
07 October 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ahmadzadehfar H, Biersack H-J, Ezziddin S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med 2010; 40 (02) 105-121
  • 2 Kennedy A, Bester L, Salem R, Sharma RA, Parks RW, Ruszniewski P. NET-Liver-Metastases Consensus Conference. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-Liver-Metastases Consensus Conference. HPB (Oxford) 2015; 17 (01) 29-37
  • 3 Salem R, Lewandowski RJ, Mulcahy MF. et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138 (01) 52-64
  • 4 Wang S-C, Bester L, Burnes JP. et al. Clinical care and technical recommendations for 90yttrium microsphere treatment of liver cancer. J Med Imaging Radiat Oncol 2010; 54 (03) 178-187
  • 5 Garlipp B, Gibbs P, Van Hazel GA. et al. Secondary technical resectability of colorectal cancer liver metastases after chemotherapy with or without selective internal radiotherapy in the randomized SIRFLOX trial. Br J Surg 2019; 106 (13) 1837-1846
  • 6 Kalinowski M, Dressler M, König A. et al. Selective internal radiotherapy with yttrium-90 microspheres for hepatic metastatic neuroendocrine tumors: a prospective single center study. Digestion 2009; 79 (03) 137-142
  • 7 Mulcahy MF, Lewandowski RJ, Ibrahim SM. et al. Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer 2009; 115 (09) 1849-1858
  • 8 Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, Shapiro B. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med 1994; 35 (10) 1637-1644
  • 9 Herba MJ, Thirlwell MP. Radioembolization for hepatic metastases. Semin Oncol 2002; 29 (02) 152-159
  • 10 Salem R, Lewandowski RJ, Gates VL. et al; Technology Assessment Committee; Interventional Oncology Task Force of the Society of Interventional Radiology. Research reporting standards for radioembolization of hepatic malignancies. J Vasc Interv Radiol 2011; 22 (03) 265-278
  • 11 Lewandowski RJ, Geschwind J-F, Liapi E, Salem R. Transcatheter intraarterial therapies: rationale and overview. Radiology 2011; 259 (03) 641-657
  • 12 Tong AKT, Kao YH, Too CW, Chin KF, Ng DC, Chow PK. Yttrium-90 hepatic radioembolization: clinical review and current techniques in interventional radiology and personalized dosimetry. Br J Radiol 2016; 89 (1062): 20150943
  • 13 Lau W-Y, Leung WT, Ho S. et al. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer 1994; 70 (05) 994-999
  • 14 Dancey JE, Shepherd FA, Paul K. et al. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med 2000; 41 (10) 1673-1681
  • 15 SirTex. About SIR-Spheres microspheres. Accessed June 30, 2021 at: https://www.sirtex.com/us/clinicians/about-sir-spheres-microspheres/
  • 16 TheraSphere™ Y-90 Glass Microspheres - Boston Scientific. Accessed June 30, 2021 at: https://www.bostonscientific.com/content/gwc/en-US/products/cancer-therapies/therasphere-y90-glass-microspheres.html
  • 17 Boston Scientific. TheraSphere Y-90 Glass Microspheres. Accessed June 30, 2021 at: https://www.bostonscientific.com/en-US/products/cancer-therapies/therasphere-y90-glass-microspheres/product-specifications.html
  • 18 Kis B, El-Haddad G, Sheth RA. et al. Liver-directed therapies for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Contr 2017; 24 (03) 1073274817729244
  • 19 National Comprehensive Cancer Network Inc. NCCN guidelines version 2.2021 hepatobiliary cancer. Natl Compr Cancer Netw 2021; 2: MS21-MS25
  • 20 Heimbach JK, Kulik LM, Finn RS. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67 (01) 358-380
  • 21 NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines ®) Hepatobiliary Cancers (Version 4.2019). https://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary.pdf. Date Accessed 9/6/2021
  • 22 EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol 2018; 69 (01) 182-236
  • 23 Chow PKH, Gandhi M, Tan SB. et al; Asia-Pacific Hepatocellular Carcinoma Trials Group. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol 2018; 36 (19) 1913-1921
  • 24 Ricke J, Klümpen HJ, Amthauer H. et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J Hepatol 2019; 71 (06) 1164-1174
  • 25 Vilgrain V, Pereira H, Assenat E. et al; SARAH Trial Group. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 2017; 18 (12) 1624-1636
  • 26 Llovet JM, Finn RS. Negative phase 3 study of 90Y microspheres versus sorafenib in HCC. Lancet Oncol 2018; 19 (02) e69
  • 27 Hermann A-L, Dieudonné A, Ronot M. et al; SARAH Trial Group. Relationship of tumor radiation-absorbed dose to survival and response in hepatocellular carcinoma treated with transarterial radioembolization with 90Y in the SARAH Study. Radiology 2020; 296 (03) 673-684
  • 28 Garin E, Tselikas L, Guiu B. et al; DOSISPHERE-01 Study Group. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6 (01) 17-29
  • 29 Ariel IM. Radioactive isotopes for adjuvant cancer therapy; animal experimentation and preliminary results in human application. Arch Surg 1964; 89: 244-249
  • 30 Ariel IM, Padula G. Treatment of asymptomatic metastatic cancer to the liver from primary colon and rectal cancer by the intraarterial administration of chemotherapy and radioactive isotopes. J Surg Oncol 1982; 20 (03) 151-156
  • 31 Ariel IM, Padula G. Treatment of symptomatic metastatic cancer to the liver from primary colon and rectal cancer by the intraarterial administration of chemotherapy and radioactive isotopes. J Surg Oncol 1978; 10 (04) 327-336
  • 32 Grady ED, Nolan TR, Crumbley AJ, Larose JH, Cheek WV. Internal hepatic radiotherapy: II. Intra-arterial radiocolloid therapy for hepatic tumors. Am J Roentgenol Radium Ther Nucl Med 1975; 124 (04) 596-599
  • 33 Ariel IM. Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y90 radiating microspheres). Ann Surg 1965; 162: 267-278
  • 34 Mantravadi RV, Spigos DG, Tan WS, Felix EL. Intraarterial yttrium 90 in the treatment of hepatic malignancy. Radiology 1982; 142 (03) 783-786
  • 35 Herba MJ, Illescas FF, Thirlwell MP. et al. Hepatic malignancies: improved treatment with intraarterial Y-90. Radiology 1988; 169 (02) 311-314
  • 36 Matsui O. Imaging of multistep human hepatocarcinogenesis by CT during intra-arterial contrast injection. Intervirology 2004; 47 (3-5): 271-276
  • 37 Lien WM, Ackerman NB. The blood supply of experimental liver metastases. II. A microcirculatory study of the normal and tumor vessels of the liver with the use of perfused silicone rubber. Surgery 1970; 68 (02) 334-340
  • 38 Arii S, Teramoto K, Kawamura T. Current progress in the understanding of and therapeutic strategies for ischemia and reperfusion injury of the liver. J Hepatobiliary Pancreat Surg 2003; 10 (03) 189-194
  • 39 Elkind MM. Modifiers of radiation response in tumor therapy: strategies and expectations. Int J Radiat Oncol Biol Phys 1982; 8 (01) 89-100
  • 40 Villalobos A, Soliman MM, Majdalany BS. et al. Yttrium-90 radioembolization dosimetry: what trainees need to know. Semin Intervent Radiol 2020; 37 (05) 543-554
  • 41 Kokabi N, Galt JR, Xing M. et al. A simple method for estimating dose delivered to hepatocellular carcinoma after yttrium-90 glass-based radioembolization therapy: preliminary results of a proof of concept study. J Vasc Interv Radiol 2014; 25 (02) 277-287
  • 42 Sirtex - Instructions for Use. Accessed June 30, 2021 at: https://www.sirtex.com/us/clinicians/instructions-for-use/
  • 43 Kao YH, Tan EH, Ng CE, Goh SW. Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review. Ann Nucl Med 2011; 25 (07) 455-461
  • 44 Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989; 5 (05) 303-311 , discussion 312–313
  • 45 Grosser OS, Ulrich G, Furth C. et al. Intrahepatic activity distribution in radioembolization with yttrium-90-labeled resin microspheres using the body surface area method--a less than perfect model. J Vasc Interv Radiol 2015; 26 (11) 1615-1621
  • 46 Snyder W, Ford M, Warner G. W. S. MIRD Pamphlet #11: S, Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs. Society of Nuclear Medicine 1975
  • 47 Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. J Nucl Med 2006; 47 (07) 1209-1211
  • 48 Toohey RE, Stabin MG, Watson EE. The AAPM/RSNA physics tutorial for residents: internal radiation dosimetry: principles and applications. Radiographics 2000; 20 (02) 533-546 , quiz 531–532
  • 49 Sarwar A, Kudla A, Weinstein JL. et al. Yttrium-90 radioembolization using MIRD dosimetry with resin microspheres. Eur Radiol 2021; 31 (03) 1316-1324
  • 50 Gnesin S, Canetti L, Adib S. et al. Partition model-based 99mTc-MAA SPECT/CT predictive dosimetry compared with 90Y TOF PET/CT posttreatment dosimetry in radioembolization of hepatocellular carcinoma: a quantitative agreement comparison. J Nucl Med 2016; 57 (11) 1672-1678
  • 51 Thomas MA, Mahvash A, Abdelsalam M, Kaseb AO, Kappadath SC. Planning dosimetry for 90Y radioembolization with glass microspheres: Evaluating the fidelity of 99mTc-MAA and partition model predictions. Med Phys 2020; 47 (10) 5333-5342
  • 52 Spahr N, Schilling P, Thoduka S, Abolmaali N, Schenk A. Predictive SIRT dosimetry based on a territorial model. EJNMMI Phys 2017; 4 (01) 25
  • 53 Palmer DH. et al. Selection of patients with hepatocellular carcinoma for selective internal radiation therapy based on tumour burden and liver function: a post-hoc analysis of the SARAH trial. Ann Oncol 2019; 30: v282
  • 54 Levillain H, Bagni O, Deroose CM. et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging 2021; 48 (05) 1570-1584
  • 55 Strigari L, Sciuto R, Rea S. et al. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations. J Nucl Med 2010; 51 (09) 1377-1385