Open Access
CC BY 4.0 · Eur J Dent 2022; 16(03): 585-593
DOI: 10.1055/s-0041-1735937
Original Article

Biaxial Flexural Strength of Different Monolithic Zirconia upon Post-Sintering Processes

1   Department of Prosthodontics, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
,
Apa Juntavee
2   Department of Preventive Dentistry, Division of Pediatric Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
,
Thipradi Phattharasophachai
3   Division of Biomaterials and Prosthodontics Research, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
› Institutsangaben

Funding This study was funded by the grant from the Faculty of Dentistry, Khon Kean University, Ministry of Higher Education, Science, Research and Innovation, Royal Thai Government.
Preview

Abstract

Objective Different post-sintering processes are expected to be a reason for alteration in the strength of zirconia. This study evaluated the effect of post-sintering processes on the flexural strength of different types of monolithic zirconia.

Materials and Methods A total of 120 classical- (Cz) and high-translucent (Hz) monolithic zirconia discs (1.2 mm thickness and 14 mm in Ø) were prepared, sintered, and randomly divided into four groups to be surface-treated with (1) as-glazed (AG); (2) finished and polished (FP); (3) finished, polished, and overglazed (FPOG); and (4) finished, polished, and heat-treated (FPHT) technique (n = 15). Biaxial flexural strength (σ) was determined on a piston-on-three ball in a universal testing machine at a speed of 0.5 mm/min.

Statistical Analysis Analysis of variance, and post hoc Bonferroni multiple comparisons were determined for significant differences (α = 0.05). Weibull analysis was applied for survival probability, Weibull modulus (m), and characteristic strength (σ0). The microstructures were examined with a scanning electron microscope and X-ray diffraction.

Results The mean ± standard deviation value of σ (MPa), m, and σ0 were 1,626.43 ± 184.38, 9.51, and 1,709.79 for CzAG; 1,734.98 ± 136.15, 12.83, and 1,799.17 for CzFP; 1,636.92 ± 130.11, 14.66, and 1,697.63 for CzFPOG; and 1,590.78 ± 161.74, 10.13, and 1,663.82 for CzFPHT; 643.30 ± 118.59, 5.59, and 695.55 for HzAG; 671.52 ± 96.77, 3.28, and 782.61 for HzFP; 556.33 ± 122.85, 4.76, and 607.01 for HzFPOG; and 598.36 ± 57.96, 11.22, and 624.89 for HzFPHT. The σ was significantly affected by the post-sintering process and type of zirconia (p < 0.05), but not by their interactions (p > 0.05). The Cz indicated a significantly higher σ than Hz. The FP process significantly enhanced σ more than other treatment procedures.

Conclusion Post-sintering processes enabled an alteration in σ of zirconia. FP enhanced σ, while FPOG and FPHT resulted in a reduction of σ. Glazing tends to induce defects at the glazing interface, while heat treatment induces a phase change to tetragonal, both resulted in reducing σ. Finishing and polishing for both Cz and Hz monolithic zirconia is recommended, while overglazed or heat-treated is not suggested.



Publikationsverlauf

Artikel online veröffentlicht:
11. Januar 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India