Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(11): 1071-1074
DOI: 10.1055/s-0041-1737457
DOI: 10.1055/s-0041-1737457
letter
Concise Synthesis of Procyanidin B2 3,3′′-Digallate Using Yb(OTf)3-Mediated Self-Condensation
This work was supported in part by JSPS KAKENHI Grant Number 18K05454.

Abstract
Lewis acid mediated self-condensation of epicatechin gallate derivative was examined. We found that Yb(OTf)3 afforded good yield of the dimeric epicatechin gallate derivative. The condensed product was applied to the synthesis of procyanidin B2 3,3′′-digallate.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1737457.
- Supporting Information
Publication History
Received: 25 March 2022
Accepted after revision: 13 April 2022
Article published online:
09 May 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Ferreira D, Coleman CM. Planta Med. 2011; 77: 1071
- 2 Coder R, Mullent W, Khan NQ, Marks SC, Wood EG, Carrier MJ, Crozier A. Nature 2006; 444: 566
- 3 Mitsuhashi S, Saito A, Nakajima N, Shima H, Ubukata M. Molecules 2008; 13: 2998
- 4 Fujii W, Toda K, Kawaguchi K, Kawahara S.-i, Katoh M, Hattori Y, Fujii H, Makabe H. Tetrahedron 2013; 69: 3543
- 5 Fujii W, Toda K, Matsumoto K, Kawaguchi K, Kawahara S.-i, Hattori Y, Fujii H, Makabe H. Tetrahedron Lett. 2013; 54: 7188
- 6 Tyagi A, Kumar S, Raina K, Wempe MF, Maroni PD, Agarwal R, Agarwal C. Mol. Carcinog. 2019; 58: 1105
- 7 Endo K, Matsui R, Sugiyama M, Asami T, Inaba C, Kobayashi S, Makabe H, Tanaka S. Biochem. Pharmacol. 2020; 177: 113952
- 8 Endo K, Sawa T, Matsui R, Asami T, Tanaka Y, Makabe H, Tanaka S. Biomed. Pharmacother. 2021; 137: 111346
- 9 Suda M, Katoh M, Toda K, Matsumoto K, Kawaguchi K, Kawahara S.-i, Hattori Y, Fujii H, Makabe H. Bioorg. Med. Chem. Lett. 2013; 23: 4935
- 10 Saito A, Mizushina Y, Ikawa H, Yoshida H, Doi Y, Tanaka A, Nakajima N. Bioorg. Med. Chem. 2005; 13: 2759
- 11 Suda M, Fujii W, Takanashi K, Hattori Y, Makabe H. Synthesis 2014; 46: 3351
- 12 Ichikawa M, Takanashi K, Suda M, Hattori Y, Kawahara S.-i, Fujii H, Makabe H. Synthesis 2016; 48: 1525
- 13 Takanashi K, Suda M, Matsumoto K, Ishihara C, Toda K, Kawaguchi K, Senga S, Kobayashi N, Ichikawa M, Katoh M, Hattori Y, Kawahara S.-i, Umezawa K, Fujii H, Makabe H. Sci. Rep. 2017; 7791
- 14 Ichikawa M, Yamamoto S, Ishihara C, Nonobe S, Hattori Y, Umezawa K, Fujii H, Makabe H. Tetrahedron 2018; 74: 3534
- 15a Chou SC, Kaur M, Thompson JA, Agarwal R, Agarwal C. Pharm. Res. 2010; 27: 619
- 15b Nonaka G.-I, Kawahara O, Nishioka I. Chem. Pharm. Bull. 1983; 31: 3906
- 15c Anke J, Petereit F, Engelhardt C, Hensel A. Nat. Prod. Res. 2008; 22: 1237
- 16 Typical Experimental Procedure To a solution of 4 (50 mg, 0.043 mmol) in CH2Cl2 (4.3 mL) was added Yb(OTf)3 (80 mg, 0.13 mmol). The resulting mixture was stirred for 18 h. After the reaction had been completed, water (20 mL) was added to the mixture. The mixture was extracted with EtOAc (3 × 20 mL). EtOAc layer was washed with water, brine, and dried with anhydrous Na2SO4. The solvents were evaporated, and the residue was purified with PTLC (hexane/EtOAc/CH2Cl2, 10:1:5) to afford 3 (36 mg, 74%) as a colorless oil. [α]16 D –42 (c 1.00, CHCl3). IR (film): 3088, 3062, 3031, 2926, 2867, 1718, 1592, 1541, 1498, 1454, 1428, 1372, 1328, 1264, 1201, 1027, 736 cm–1. 1H NMR (400 MHz, CDCl3, 55:45 rotational isomer): δ = 7.45–6.50 (m, 80 H), 6.30–6.08 (m, 3 H), 5.83–5.25 (m, 4 H), 5.15–4.32 (m, 28 H), 4.30–3.45 (m, 8 H), 1.25 (t, J = 6.8 Hz, 1.35 H), 1.17 (t, J = 6.8 Hz, 1.65 H). 13C NMR (100 MHz, CDCl3, 55:45 rotational isomer): δ = 165.8, 165.74, 165.71, 164.1, 164.0, 163.7, 163.6, 163.5, 163.3, 158.7, 158.6, 158.5, 158.4, 157.95, 157.93, 157.88, 157.1, 156.0, 155.9, 155.8, 155.7, 155.2, 154.9, 154.8, 154.3, 152.9, 152.8, 152.4, 152.3, 152.25, 152.19, 152.10, 152.08, 149.4, 149.3, 149.1, 148.9, 148.8, 148.72, 148.68, 148.6, 148.5, 148.4, 143.4, 143.3, 142.8, 142.7, 142.5, 142.4, 142.3, 142.1, 137.8, 137.74, 137.67, 137.62, 137.56, 137.53, 137.50, 137.44, 137.40, 137.36, 137.25, 137.18, 137.1, 137.0, 136.93, 136.89, 136.8, 136.7, 136.6, 136.54, 136.51, 136.45, 132.0, 131.7, 131.5, 130.8, 130.6, 130.5, 128.8-126.9, 126.3, 126.0, 125.50, 125.46, 125.4, 125.35, 125.41, 124.6, 124.4, 120.35, 120.30, 120.26, 120.14, 120.12, 120.06, 119.8, 119.4, 114.8, 114.6, 114.3, 114.2, 114.11, 114.08, 114.00, 113.98, 113.44, 113.40, 113.38, 113.34, 113.33, 113.1, 113.0, 112.7, 110.6, 110.4, 110.1, 110.0, 109.8, 109.6, 109.3, 109.0, 108.6, 105.3, 105.2, 105.0, 104.9, 103.7, 103.6, 103.3, 95.0, 94.2, 94.0, 92.0, 91.7, 75.9, 75.6, 75.2, 75.12, 75.05, 74.8, 74.6, 74.4, 74.3, 73.6, 73.4, 73.0, 71.7, 71.5, 71.4, 71.3, 71.1, 70.9, 70.8, 70.7, 70.6, 70.5, 70.0, 69.94, 69.87, 69.8, 35.2, 34.1, 33.8, 32.0, 29.8, 29.5, 22.8, 15.5, 15.4, 14.2. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C146H126O22Na: 2253.8633; found: 2253.8624.