Subscribe to RSS
DOI: 10.1055/s-0042-105276
Zerebrale Hypoxie nach Reanimation
Cerebral Hypoxia after Cardiopulmonary ResuscitationPublication History
Publication Date:
14 June 2016 (online)
Zusammenfassung
Die zerebrale Hypoxie ist eine häufige Ursache für die Morbidität und Mortalität von Patienten nach kardiopulmonaler Reanimation. In diesem Artikel werden pathophysiologische Zusammenhänge, die selektive neuronale Vulnerabilität und therapeutische Optionen der zerebralen Hypoxie beschrieben. Von besonderem Interesse ist die therapeutische Hypothermie (TH), die als erste neuroprotektive Methode einen positiven klinischen Effekt zeigte. Zudem spielen in der Therapie Blutdruckmanagment, Oxygenierung und Glukosestoffwechsel eine Rolle. Die Behandlung und Vermeidung epileptischer Anfälle wird erörtert, da anhaltende epileptische Anfälle weitere Schädigungen verursachen können und unverzüglich und effektiv behandelt werden müssen. Die Prognoseeinschätzung von Patienten mit zerebraler Hypoxie ist häufig schwierig. Wesentliche Parameter, die zur Einschätzung des Outcomes komatöser Patienten nach Reanimation dienen, werden diskutiert. Vor allem hinsichtlich ihrer Reliabilität und Rate an falsch-positiven Ergebnissen bei Patienten, die mit oder ohne therapeutische Hypothermie behandelt wurden, werden klinische Parameter (Pupillenreaktion, Cornealreflex usw.), Biomarker (NSE), elektrophysiologische Untersuchungen (SEP und EEG) und CT- und MR-basierte Parameter erörtert. Aufgrund der aufgeführten Daten sollte die Prognoseeinschätzung besonders nach therapeutischer Hypothermie vorsichtig und mit einem ausreichenden zeitlichen Abstand zum Ereignis erfolgen und sich nicht auf einzelne Parameter allein stützen.
Abstract
Cerebral hypoxia is a common cause of morbidity and mortality in post-cardiac arrest patients. In this article, the pathophysiology, selective neuronal vulnerability and therapeutic strategies of brain injury are described. Therapeutic hypothermia (TH) has been the first clinically proven neuroprotective method; blood pressure management, oxygenation and control of glycemia also play a therapeutic role. Seizure management and prevention are major treatment targets, since prolonged seizures may cause further cerebral injury and should therefore be treated promptly and effectively. Prognosis of comatose patients with post-cardiac arrest brain injury is crucial. Parameters widely used to determine the outcome in comatose patients after cardiac arrest are discussed. With the focus on the reliability and false-positive rate in patients treated with or without mild hypothermia, clinical parameters (pupillary reactivity, corneal reflex e. g.), biomarkers (NSE), electrophysiological parameters (SEP and EEG), and CT- and MRI-based parameters are elucidated. Based on data described, prognosis should be made with precaution especially after mild hypothermia and after appropriate lapse of time and not be based on any single parameter.
-
Literatur
- 1 Neumar RW, Nolan JP, Adrie C et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 2008; 118: 2452-2483
- 2 Grasner JT, Seewald S, Bohn A et al. [German resuscitation registry: science and resuscitation research]. Anaesthesist 2014; 63: 470-476
- 3 Adielsson A, Hollenberg J, Karlsson T et al. Increase in survival and bystander CPR in out-of-hospital shockable arrhythmia: bystander CPR and female gender are predictors of improved outcome. Experiences from Sweden in an 18-year perspective. Heart 2011; 97: 1391-1396
- 4 Nadkarni VM, Larkin GL, Peberdy MA et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA 2006; 295: 50-57
- 5 Berdowski J, Berg RA, Tijssen JG et al. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation 2010; 81: 1479-1487
- 6 Deakin CD, Fothergill R, Moore F et al. Level of consciousness on admission to a Heart Attack Centre is a predictor of survival from out-of-hospital cardiac arrest. Resuscitation 2014; 85: 905-909
- 7 Tomte O, Andersen GO, Jacobsen D et al. Strong and weak aspects of an established post-resuscitation treatment protocol-A five-year observational study. Resuscitation 2011; 82: 1186-1193
- 8 Lemiale V, Dumas F, Mongardon N et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 2013; 39: 1972-1980
- 9 Laver S, Farrow C, Turner D et al. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med 2004; 30: 2126-2128
- 10 Laureys S, Celesia GG, Cohadon F et al. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 2010; 8: 68
- 11 Safar P. Resuscitation after Brain Ischemia. In: Grenvik A, Safar P. eds. Brain failure and resuscitation. New York: Churchill Livingstone; 1981: 155-184
- 12 Pachys G, Kaufman N, Bdolah-Abram T et al. Predictors of long-term survival after out-of-hospital cardiac arrest: the impact of activities of daily living and cerebral performance category scores. Resuscitation 2014; 85: 1052-1058
- 13 Opie LH. Reperfusion injury and its pharmacologic modification. Circulation 1989; 80: 1049-1062
- 14 White BC, Sullivan JM, DeGracia DJ et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000; 179: 1-33
- 15 Brierley JB, Meldrum BS, Brown AW. The threshold and neuropathology of cerebral „anoxic-ischemic“ cell change. Arch Neurol 1973; 29: 367-374
- 16 Mullner M, Sterz F, Binder M et al. Arterial blood pressure after human cardiac arrest and neurological recovery. Stroke 1996; 27: 59-62
- 17 Nishizawa H, Kudoh I. Cerebral autoregulation is impaired in patients resuscitated after cardiac arrest. Acta Anaesthesiol Scand 1996; 40: 1149-1153
- 18 Nolan JP, Soar J, Cariou A et al. Postreanimationsbehandlung. Kapitel 5 der Leitlinien 2015 des European Resuscitation Council. Notfall Rettungsmed 2015; 18: 904-931
- 19 Richards EM, Fiskum G, Rosenthal RE et al. Hyperoxic reperfusion after global ischemia decreases hippocampal energy metabolism. Stroke 2007; 38: 1578-1584
- 20 Kilgannon JH, Jones AE, Shapiro NI et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 2010; 303: 2165-2171
- 21 Kilgannon JH, Jones AE, Parrillo JE et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation 2011; 123: 2717-2722
- 22 Janz DR, Hollenbeck RD, Pollock JS et al. Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Crit Care Med 2012; 40: 3135-3139
- 23 Losert H, Sterz F, Roine RO et al. Strict normoglycaemic blood glucose levels in the therapeutic management of patients within 12 h after cardiac arrest might not be necessary. Resuscitation 2008; 76: 214-220
- 24 Morimoto Y, Kemmotsu O, Kitami K et al. Acute brain swelling after out-of-hospital cardiac arrest: pathogenesis and outcome. Crit Care Med 1993; 21: 104-110
- 25 Peberdy MA, Callaway CW, Neumar RW et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122: S768-S786
- 26 Rittenberger JC, Popescu A, Brenner RP et al. Frequency and timing of nonconvulsive status epilepticus in comatose post-cardiac arrest subjects treated with hypothermia. Neurocrit Care 2012; 16: 114-122
- 27 Rossetti AO, Oddo M, Liaudet L et al. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology 2009; 72: 744-749
- 28 Bouwes A, van Poppelen D, Koelman JH et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol 2012; 12: 63
- 29 Sandroni C, Cariou A, Cavallaro F et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation 2014; 85: 1779-1789
- 30 Zeiner A, Holzer M, Sterz F et al. Hyperthermia after cardiac arrest is associated with an unfavorable neurologic outcome. Arch Intern Med 2001; 161: 2007-2012
- 31 The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346: 549-556
- 32 Bernard SA, Gray TW, Buist MD et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346: 557-563
- 33 Arrich J, Holzer M, Havel C et al. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev 2012; 9 CD004128
- 34 Nielsen N, Wetterslev J, Cronberg T et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med 2013; 369: 2197-2206
- 35 Dumas F, Grimaldi D, Zuber B et al. Is hypothermia after cardiac arrest effective in both shockable and nonshockable patients?: insights from a large registry. Circulation 2011; 123: 877-886
- 36 Vaahersalo J, Hiltunen P, Tiainen M et al. Therapeutic hypothermia after out-of-hospital cardiac arrest in Finnish intensive care units: the FINNRESUSCI study. Intensive Care Med 2013; 39: 826-837
- 37 Testori C, Sterz F, Behringer W et al. Mild therapeutic hypothermia is associated with favourable outcome in patients after cardiac arrest with non-shockable rhythms. Resuscitation 2011; 82: 1162-1167
- 38 Mader TJ, Nathanson BH, Soares 3rd WE et al. Comparative effectiveness of therapeutic hypothermia after out-of-hospital cardiac arrest: insight from a large data registry. Ther Hypothermia Temp Manag 2014; 4: 21-31
- 39 Nichol G, Huszti E, Kim F et al. Does induction of hypothermia improve outcomes after in-hospital cardiac arrest?. Resuscitation 2013; 84: 620-625
- 40 Kim F, Nichol G, Maynard C et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA 2014; 311: 45-52
- 41 Debaty G, Maignan M, Savary D et al. Impact of intra-arrest therapeutic hypothermia in outcomes of prehospital cardiac arrest: a randomized controlled trial. Intensive Care Med 2014; 40: 1832-1842
- 42 Nordberg P, Taccone FS, Castren M et al. Design of the PRINCESS trial: pre-hospital resuscitation intra-nasal cooling effectiveness survival study (PRINCESS). BMC Emerg Med 2013; 13: 21
- 43 Stub D, Bernard S, Pellegrino V et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation 2014; 86: 88-94
- 44 Wijdicks EF, Hijdra A, Young GB et al. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006; 67: 203-210
- 45 Longstreth Jr. WT, Inui TS, Cobb LA et al. Neurologic recovery after out-of-hospital cardiac arrest. Ann Intern Med 1983; 98: 588-592
- 46 Nolan JP, Hazinski MF, Billi JE et al. Part 1: Executive summary: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation 2010; 81 (Suppl. 01) e1-e25
- 47 Bisschops LL, van Alfen N, Bons S et al. Predictors of poor neurologic outcome in patients after cardiac arrest treated with hypothermia: a retrospective study. Resuscitation 2011; 82: 696-701
- 48 Leithner CSC, Hasper D, Ploner CJ. Prognose der Hirnfunktion nach kardiopulmonaler Reanimation und therapeutischer Hypothermie. Akt Neurol 2012; 39: 145-154
- 49 Rossetti AO, Oddo M, Logroscino G et al. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol 2010; 67: 301-307
- 50 Aguila A, Funderburk M, Guler A et al. Clinical predictors of survival in patients treated with therapeutic hypothermia following cardiac arrest. Resuscitation 2010; 81: 1621-1626
- 51 Schefold JC, Storm C, Kruger A et al. The Glasgow Coma Score is a predictor of good outcome in cardiac arrest patients treated with therapeutic hypothermia. Resuscitation 2009; 80: 658-661
- 52 Cronberg T, Horn J, Kuiper MA et al. A structured approach to neurologic prognostication in clinical cardiac arrest trials. Scand J Trauma Resusc Emerg Med 2013; 21: 45
- 53 Rittenberger JC, Sangl J, Wheeler M et al. Association between clinical examination and outcome after cardiac arrest. Resuscitation 2010; 81: 1128-1132
- 54 Kamps MJ, Horn J, Oddo M et al. Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intens Care Med 2013; 39: 1671-1682
- 55 Zandbergen EG, de Haan RJ, Stoutenbeek CP et al. Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet 1998; 352: 1808-1812
- 56 Edgren E, Hedstrand U, Kelsey S et al. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet 1994; 343: 1055-1059
- 57 Samaniego EA, Mlynash M, Caulfield AF et al. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care 2011; 15: 113-119
- 58 Krumholz A, Stern BJ, Weiss HD. Outcome from coma after cardiopulmonary resuscitation: relation to seizures and myoclonus. Neurology 1988; 38: 401-405
- 59 Legriel S, Hilly-Ginoux J, Resche-Rigon M et al. Prognostic value of electrographic postanoxic status epilepticus in comatose cardiac-arrest survivors in the therapeutic hypothermia era. Resuscitation 2013; 84: 343-350
- 60 Alvarez V, Sierra-Marcos A, Oddo M et al. Yield of intermittent versus continuous EEG in comatose survivors of cardiac arrest treated with hypothermia. Crit Care 2013; 17: R190
- 61 Cruccu G, Aminoff MJ, Curio G et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 2008; 119: 1705-1719
- 62 Young GB, Doig G, Ragazzoni A. Anoxic-ischemic encephalopathy: clinical and electrophysiological associations with outcome. Neurocrit Care 2005; 2: 159-164
- 63 Bouwes A, Binnekade JM, Kuiper MA et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol 2012; 71: 206-212
- 64 Leithner C, Ploner CJ, Hasper D et al. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest?. Neurology 2010; 74: 965-969
- 65 Laureau E, Marciniak B, Hebrard A et al. Comparative study of propofol and midazolam effects on somatosensory evoked potentials during surgical treatment of scoliosis. Neurosurgery 1999; 45: 69-74 discussion 75
- 66 Asouhidou I, Katsaridis V, Vaidis G et al. Somatosensory evoked potentials suppression due to remifentanil during spinal operations; a prospective clinical study. Scoliosis 2010; 5: 8
- 67 Zandbergen EG, Hijdra A, de Haan RJ et al. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol 2006; 117: 1529-1535
- 68 Pfeifer R, Weitzel S, Gunther A et al. Investigation of the inter-observer variability effect on the prognostic value of somatosensory evoked potentials of the median nerve (SSEP) in cardiac arrest survivors using an SSEP classification. Resuscitation 2013; 84: 1375-1381
- 69 Zandbergen EG, Hijdra A, Koelman JH et al. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology 2006; 66: 62-68
- 70 Mortberg E, Zetterberg H, Nordmark J et al. S-100B is superior to NSE, BDNF and GFAP in predicting outcome of resuscitation from cardiac arrest with hypothermia treatment. Resuscitation 2011; 82: 26-31
- 71 Zellner T, Gartner R, Schopohl J et al. NSE and S-100B are not sufficiently predictive of neurologic outcome after therapeutic hypothermia for cardiac arrest. Resuscitation 2013; 84: 1382-1386
- 72 Engel H, Ben Hamouda N, Portmann K et al. Serum procalcitonin as a marker of post-cardiac arrest syndrome and long-term neurological recovery, but not of early-onset infections, in comatose post-anoxic patients treated with therapeutic hypothermia. Resuscitation 2013; 84: 776-781
- 73 Annborn M, Dankiewicz J, Erlinge D et al. Procalcitonin after cardiac arrest – an indicator of severity of illness, ischemia-reperfusion injury and outcome. Resuscitation 2013; 84: 782-787
- 74 Dell'anna AM, Bini Vinotti J, Beumier M et al. C-reactive protein levels after cardiac arrest in patients treated with therapeutic hypothermia. Resuscitation 2014; 85: 932-938
- 75 Annborn M, Dankiewicz J, Nielsen N et al. CT-proAVP (copeptin), MR-proANP and Peroxiredoxin 4 after cardiac arrest: release profiles and correlation to outcome. Acta Anaesthesiol Scand 2014; 58: 428-436
- 76 Gilje P, Gidlof O, Rundgren M et al. The brain-enriched microRNA miR-124 in plasma predicts neurological outcome after cardiac arrest. Crit Care 2014; 18: R40
- 77 Stammet P, Goretti E, Vausort M et al. Circulating microRNAs after cardiac arrest. Crit Care Med 2012; 40: 3209-3214
- 78 Fugate JE, Wijdicks EF, Mandrekar J et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol 2010; 68: 907-914
- 79 Luyt CE, Galanaud D, Perlbarg V et al. Diffusion tensor imaging to predict long-term outcome after cardiac arrest: a bicentric pilot study. Anesthesiology 2012; 117: 1311-1321
- 80 Hellstrom J, Owall A, Martling CR et al. Inhaled isoflurane sedation during therapeutic hypothermia after cardiac arrest: a case series. Crit Care Med 2014; 42: e161-e166