Subscribe to RSS
DOI: 10.1055/s-0042-111671
Gerätegestützte Neurorehabilitation – was wird die Zukunft bringen?
Publication History
Publication Date:
09 September 2016 (online)

Zusammenfassung
Trotz aller Fortschritte in der Grundlagenforschung ist davon auszugehen, dass eine Querschnittlähmung auch in Zukunft nicht vollständig heilbar sein wird. Daher kommt auch zukünftig der Rehabilitation der Betroffenen eine entscheidende Bedeutung zu. Zur Effektivitätssteigerung von restaurativen Therapiemaßnahmen stehen inzwischen Geräte mit unterschiedlicher Komplexität zur Verfügung. Ein vollständiger Funktionsausfall kann speziell bei Hochgelähmten nur durch aufwendige technische Systeme kompensiert werden. In diesem Übersichtsartikel sollen aktuelle technologische Entwicklungen vorgestellt und deren Möglichkeiten für die Rehabilitation von Querschnittgelähmten aufgezeigt werden.
-
Literatur
- 1 Anderson KD. Targeting recovery: Priorities of the spinal cord-injured population. J Neurotrauma 2004; 21: 1371-1383
- 2 Banz R, Bolliger M, Colombo G et al. Computerized visual feedback: An adjunct to robotic-assisted gait training. Phys Ther 2008; 88: 1135-1145
- 3 Benson I, Hart K, Tussler D et al. Lower-limb exoskeletons for individuals with chronic spinal cord injury: Findings from a feasibility study. Clin Rehabil 2016; 30: 73-84
- 4 Contreras-Vidal JL, N AB, Brantley J. et al. Powered exoskeletons for bipedal locomotion after spinal cord injury. J Neural Eng 2016; 13: 031001
- 5 Curt A, Van Hedel HJ, Klaus D et al. Recovery from a spinal cord injury: Significance of compensation, neural plasticity, and repair. Journal of Neurotrauma 2008; 25: 677-685
- 6 Dietz V, Muller R, Colombo G. Locomotor activity in spinal man: Significance of afferent input from joint and load receptors. Brain 2002; 125: 2626-2634
- 7 Dittuno PL, Ditunno Jr JF. Walking index for spinal cord injury (WISCI II): Scale revision. Spinal Cord 2001; 39: 654-656
- 8 Friden J, Gohritz A. Tetraplegia management update. J Hand Surg Am 2015; 40: 2489-2500
- 9 Hicks AL, Ginis KA. Treadmill training after spinal cord injury: It’s not just about the walking. Journal of Rehabilitation Research and Development 2008; 45: 241-248
- 10 Laver KE, George S, Thomas S et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2011; 9: CD008349
- 11 Lunenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. J Neuroeng Rehabil 2007; 4: 1
- 12 Martinez M, Delivet-Mongrain H, Rossignol S. Treadmill training promotes spinal changes leading to locomotor recovery after partial spinal cord injury in cats. J Neurophysiol 2013; 109: 2909-2922
- 13 McCaughey EJ, Purcell M, McLean AN et al. Changing demographics of spinal cord injury over a 20-year period: A longitudinal population-based study in Scotland. Spinal Cord 2016; 54: 270-276
- 14 Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: A systematic review. Arch Phys Med Rehabil 2013; 94: 2297-2308
- 15 Müller-Putz GR, Leeb R, Tangermann M et al. Towards noninvasive hybrid brain-computer interfaces: Framework, practice, clinical application, and beyond. P Ieee 2015; 103: 926-943
- 16 NSCISC. The 2012 Annual Statistical Report for the Model Spinal Cord Injury Care System. In: National SCI Statistical Center 2012
- 17 Peckham PH, Keith MW, Kilgore KL et al. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: A multicenter study. Arch Phys Med Rehabil 2001; 82: 1380-1388
- 18 Popovic-Maneski L, Kostic M, Bijelic G et al. Multi-pad electrode for effective grasping: Design. IEEE Trans Neural Syst Rehabil Eng 2013; 21: 648-654
- 19 Rupp R, Rohm M, Schneiders M et al. Functional rehabilitation of the paralyzed upper extremity after spinal cord injury by noninvasive hybrid neuroprostheses. P Ieee 2015; 103: 954-968
- 20 Rupp R, Schliessmann D, Plewa H et al. Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: A prospective, pre-post intervention, proof-of-concept study. PLoS One 2015; 10: e0119167
- 21 Schmalfuss L, Rupp R, Tuga MR et al. Steer by ear: Myoelectric auricular control of powered wheelchairs for individuals with spinal cord injury. Restor Neurol Neurosci 2015; 34: 79-95
- 22 Schuler T, Brutsch K, Muller R et al. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. NeuroRehabilitation 2011; 28: 401-411
- 23 Snoek GJ, MJ IJ, Hermens HJ et al. Survey of the needs of patients with spinal cord injury: Impact and priority for improvement in hand function in tetraplegics. Spinal Cord 2004; 42: 526-532
- 24 Tate JJ, Milner CE. Real-time kinematic, temporospatial, and kinetic biofeedback during gait retraining in patients: A systematic review. Physical Therapy 2010; 90: 1123-1134