Geburtshilfe Frauenheilkd 2017; 77(01): 73-80
DOI: 10.1055/s-0042-113461
GebFra Science
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Slit2/Robo4 Signaling: Potential Role of a VEGF-Antagonist Pathway to Regulate Luteal Permeability

Slit2/Robo4 Signaling: Potenzielle Rolle eines VEGF-antagonistischen Systems in der Regulation der lutealen Permeabilität
I. Bekes
1   University of Ulm, Department of Gynecology and Obstetrics, Ulm, Germany
,
V. Haunerdinger
2   University Childrenʼs Hospital Zurich, Department of Pediatric Stem Cell Transplantation, Zurich, Switzerland
,
R. Sauter
1   University of Ulm, Department of Gynecology and Obstetrics, Ulm, Germany
,
I. Holzheu
1   University of Ulm, Department of Gynecology and Obstetrics, Ulm, Germany
,
W. Janni
1   University of Ulm, Department of Gynecology and Obstetrics, Ulm, Germany
,
A. Wöckel
3   University of Würzburg, Department of Gynecology and Obstetrics, Würzburg, Germany
,
C. Wulff
3   University of Würzburg, Department of Gynecology and Obstetrics, Würzburg, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 08. Mai 2016
revised 21. Juli 2016

accepted 25. Juli 2016

Publikationsdatum:
30. Januar 2017 (online)

Abstract

Introduction The corpus luteum (CL) is dependent on luteal vascular permeability, which is controlled by human chorionic gonadotropin (hCG) via vascular endothelial growth factor (VEGF). In this study we investigated the role of a potential VEGF antagonist pathway – Slit2/Robo4 – and its influence on endothelial cell adhesion.

Materials and Methods Luteinized granulosa cells (LGCs) were stimulated with hCG in the absence or presence of a VEGF inhibitor. The expression of VEGF and Slit2 were measured. Human umbilical vein endothelial cells (HUVECs) were stimulated with Slit2 or VEGF, and gene expressions of cadherin 5 (CDH5) and claudin 5 (CLDN5) were measured. Following Robo4 knockdown, CDH5, CLDN5 and endothelial permeability were measured.

Results Stimulation of human LGCs with hCG significantly increased VEGF while Slit2 expression was significantly suppressed. Inhibition of VEGF action after hCG stimulation did not change Slit2 suppression. Slit2 knockdown did not affect VEGF expression. While VEGF stimulation of HUVECs significantly suppressed CDH5 and CLDN5 gene expression, stimulation of HUVECs with Slit2 resulted in a significant increase in CDH5 and CLDN5. Robo4 knockdown was done, leading to downregulation of CDH5 and CLDN5 which resulted in significantly increased permeability.

Conclusions Our results indicate the existence of a VEGF-antagonist pathway in the CL that decreases vascular permeability. During the functional life of the CL the pathway is suppressed by hCG. It is possible that stimulation of this pathway could be used to treat ovarian hyperstimulation syndrome.

Zusammenfassung

Einleitung Voraussetzung für die regelrechte Funktion des Corpus luteum ist ein durchlässiges Gefäßsystem. Diese vaskuläre Durchlässigkeit wird durch die Einwirkung des humanen Choriogonadotropins (hCG) auf den Vascular Endothelial Growth Factor (VEGF) kontrolliert. In dieser Studie untersuchten wir ein potenzielles VEGF-antagonistisches System – das Slit2/Robo4-System – und dessen Auswirkung auf die endotheliale Zelladhäsion.

Material und Methoden Luteinisierte Granulosazellen (LGC) wurden mit hCG stimuliert mit oder ohne Beigabe eines VEGF-Hemmers. Es wurde die VEGF- und Slit2-Expression gemessen. Aus der menschlichen Nabelschnur gewonnene venöse Endothelzellen (HUVECs) wurden mit Slit2 oder VEGF stimuliert. Danach wurde die Genexpression von Cadherin 5 (CDH5) und Claudin 5 (CLDN5) gemessen. Es wurden ein Robo4-Knockdown durchgeführt und die nachfolgende CDH5- und CLDN5-Expression sowie die endotheliale Durchlässigkeit gemessen.

Ergebnisse Die Stimulation von menschlichen LGCs mit dem hCG führte zu einer wesentlichen Steigerung von VEGF, während die Slit2-Expression signifikant unterdrückt wurde. Die Hemmung der VEGF-Aktivität nach der hCG-Stimulation wirkte sich nicht auf die Unterdrückung der Slit2-Expression aus. Der Slit2-Knockdown hatte keine Auswirkungen auf die VEGF-Expression. Während die VEGF-Stimulation von HUVECs die Genexpression von CDH5 und CLDN5 signifikant unterdrückte, führte die Slit2-Stimulation von HUVECs zu einer signifikanten Steigerung der CDH5- und CLDN5-Expression. Es wurde ein Robo4-Knockdown durchgeführt, was zu einer Herabregulation von CDH5 und CLDN5 führte und die Durchlässigkeit signifikant steigerte.

Schlussfolgerung Unsere Ergebnisse weisen auf das Vorhandensein eines VEGF-antagonistischen Systems im Corpus luteum hin, das die vaskuläre Gefäßdurchlässigkeit mindert. Dieses System wird während der Funktionsdauer des Corpus luteum durch das hCG unterdrückt. Es kann daher angenommen werden, dass eine Stimulation dieses Systems zur Behandlung beispielsweise des ovariellen Hyperstimulationssyndroms eingesetzt werden könnte.

 
  • References

  • 1 Fraser HM, Wulff C. Angiogenesis in the corpus luteum. Reprod Biol Endocrinol 2003; 1: 88
  • 2 Rodewald M, Herr D, Duncan WC. et al. Molecular mechanisms of ovarian hyperstimulation syndrome: paracrine reduction of endothelial claudin 5 by hCG in vitro is associated with increased endothelial permeability. Hum Reprod 2009; 24: 1191-1199
  • 3 Herr D, Fraser HM, Konrad R. et al. Human chorionic gonadotropin controls luteal vascular permeability via vascular endothelial growth factor by down-regulation of a cascade of adhesion proteins. Fertil Steril 2013; 99: 1749-1758
  • 4 Groten T, Fraser HM, Duncan WC. et al. Cell junctional proteins in the human corpus luteum; changes during the normal cycle and after HCG treatment. Hum Reprod 2006; 21: 3096-3102
  • 5 Rodewald M, Herr D, Fraser HM. et al. Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor. Mol Hum Reprod 2007; 13: 781-789
  • 6 Levin ER, Rosen GF, Cassidenti DL. et al. Role of vascular endothelial growth factor in Ovarian Hyperstimulation Syndrome. J Clin Invest 1998; 102: 1978-1985
  • 7 Villasante A, Pacheco A, Pau E. et al. Soluble vascular endothelial-cadherin levels correlate with clinical and biological aspects of severe ovarian hyperstimulation syndrome. Hum Reprod 2008; 23: 662-667
  • 8 Seeger M, Tear G, Ferres-Marco D. et al. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from midline. Neuron 1993; 10: 409-426
  • 9 Kidd T, Russell C, Goodman CS. et al. Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 1998; 20: 25-33
  • 10 Yuan SS, Cox LA, Dasika GK. et al. Cloning and functional studies of a novel gene aberrantly expressed in RB-deficient embryos. Dev Biol 1999; 207: 62-75
  • 11 Huminiecki L, Gorn M, Suchting S. et al. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 2002; 79: 547-552
  • 12 Dickinson RE, Duncan WC. The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system. Reproduction 2010; 139: 697-704
  • 13 Dai CF, Jiang YZ, Li Y. et al. Expression and roles of Slit/Robo in human ovarian cancer. Histochem Cell Biol 2011; 135: 475-485
  • 14 Rothberg JM, Hartley DA, Walther Z. et al. slit: an EGF-homologous locus of D. melanogaster involved in the development of the embryonic central nervous system. Cell 1988; 55: 1047-1059
  • 15 Rothberg JM, Jacobs JR, Goodman CS. et al. slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev 1990; 4: 2169-2187
  • 16 Rothberg JM, Artavanis-Tsakonas S. Modularity of the slit protein. Characterization of a conserved carboxy-terminal sequence in secreted proteins and a motif implicated in extracellular protein interactions. J Mol Biol 1992; 227: 367-370
  • 17 Itho A, Miyabayashi T, Ohno M. et al. Cloning and expressions of three mammalian homologues of Drosophila slit suggest possible roles for Slit in the formation and maintenance of the nervous system. Brain Res Mol Brain Res 1998; 62: 175-186
  • 18 Brose K, Bland KS, Wang KH. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 1999; 96: 795-806
  • 19 Battye R, Stevens A, Perry RL. et al. Repellent signaling by Slit requires the leucine-rich repeats. J Neurosci 2001; 21: 4290-4298
  • 20 Chen JH, Wen L, Dupuis S. et al. The N-terminal leucine-rich regions in Slit are sufficient to repel olfactory bulb axons and subventricular zone neurons. J Neurosci 2001; 1521: 1548-1556
  • 21 Liu Z, Patel K, Schmidt H. et al. Extracellular IG domains 1 and 2 of Robo are important for ligand (Slit) binding. Mol Cell Neurosci 2004; 226: 232-240
  • 22 Park KW, Morrison CM, Sorensen LK. et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 2003; 261: 251-267
  • 23 Seth P, Lin Y, Hanai J. et al. Magic roundabout, a tumor endothelial marker: expression and signaling. Biochem Biophys Res Commun 2005; 32: 533-541
  • 24 Jones CA, London NR, Chen H. et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 2008; 14: 448-453
  • 25 Han X, Zhang MC. Potential anti-angiogenic role of Slit2 in corneal neovascularization. Exp Eye Res 2010; 90: 742-749
  • 26 Prasad A, Fernandis AZ, Rao Y. et al. Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem 2004; 279: 9115-9124
  • 27 Prasad A, Paruchuri V, Preet A. et al. Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem 2008; 83: 26624-26633
  • 28 Stella MC, Trusolino L, Comoglio PM. The Slit/Robo system suppresses hepatocyte growth factor-dependent invasion and morphogenesis. Mol Biol Cell 2009; 20: 642-657
  • 29 Kaur S, Samant GV, Pramanik K. et al. Silencing of directional migration in roundabout4 knockdown endothelial cells. BMC Cell Biol 2008; 9: 61
  • 30 Duncan WC, Hilier SG, Gay E. et al. Connective tissue growth factor expression in the human corpus luteum: paracrine regulation by human chorionic gonadotropin. J Clin Endocrinol Metab 2005; 90: 5366-5376
  • 31 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-408
  • 32 Fraser HM, Dickson SE, Lunn SF. et al. Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology 2000; 141: 995-1000
  • 33 Wulff C, Wilson H, Rudge JS. et al. Luteal angiogenesis: prevention and intervention by treatment with vascular endothelial growth factor trap(A40). J Clin Endocrinol Metab 2001; 86: 3377-3386
  • 34 Neulen J, Raczek S, Pogorzelski M. et al. Secretion of vascular endothelial growth factor/vascular permeability factor from human luteinized granulosa cells is human chorionic gonadotrophin dependent. Mol Hum Reprod 1998; 4: 203-206
  • 35 Wulff C, Wilson H, Largue P. et al. Angiogenesis in the human corpus luteum: localization and changes in angiopoietins, tie-2, and vascular endothelial growth factor messenger ribonucleic acid. J Clin Endocrinol Metab 2000; 85: 4302-4309
  • 36 Dickinson RE, Myers M, Duncan WC. Novel regulated expression of the SLIT/ROBO pathway in the ovary: possible role during luteolysis in women. Endocrinology 2008; 149: 5024-5034
  • 37 Herr D, Bekes I, Wulff C. Regulation of endothelial permeability in the corpus luteum: a review of the literature. Geburtsh Frauenheilk 2013; 73: 1107-1111
  • 38 Kaur S, Castellone MD, Bedell VM. et al. Robo4 signaling in endothelial cells implies attraction guidance mechanisms. J Biol Chem 2006; 281: 11347-11356
  • 39 Bedell VM, Yeo SY, Park KW. et al. roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci U S A 2005; 102: 6373-6378
  • 40 Kidd T, Bland KS, Goodman CS. Slit is the midline repellent for the robo receptor in Drosophila. Cell 1999; 96: 785-794