Rofo 2017; 189(03): 233-239
DOI: 10.1055/s-0042-120112
Musculoskeletal System
© Georg Thieme Verlag KG Stuttgart · New York

Comparison of Lumbar Lordosis in Lateral Radiographs in Standing Position with supine MR Imaging in consideration of the Sacral Slope

Vergleich der lumbalen Lordose im seitlichen Röntgenbild im Stehen und der MRT unter besonderer Berücksichtigung des „Sacral Slope“
Achim Benditz
1   Orthopedic Surgery, University Medical Center Regensburg, Bad Abbach/Regensburg, Germany
,
Daniel Boluki
1   Orthopedic Surgery, University Medical Center Regensburg, Bad Abbach/Regensburg, Germany
,
Markus Weber
1   Orthopedic Surgery, University Medical Center Regensburg, Bad Abbach/Regensburg, Germany
,
Florian Zeman
2   Center for Clinical Studies, University Medical Center Regensburg, Germany
,
Joachim Grifka
1   Orthopedic Surgery, University Medical Center Regensburg, Bad Abbach/Regensburg, Germany
,
Florian Völlner
1   Orthopedic Surgery, University Medical Center Regensburg, Bad Abbach/Regensburg, Germany
› Author Affiliations
Further Information

Publication History

24 July 2016

14 October 2016

Publication Date:
21 December 2016 (online)

Abstract

Purpose To investigate the influence of sacral slope on the correlation between measurements of lumbar lordosis obtained by standing radiographs and magnetic resonance images in supine position (MRI). Little information is available on the correlation between measurements of lumbar lordosis obtained by radiographic and MR images. Most relevant studies have shown correlations for the thoracic spine, but detailed analyses on the lumbar spine are lacking.

Methods MR images and standing lateral radiographs of 63 patients without actual low back pain or radiographic pathologies of the lumbar spine were analyzed. Standing radiographic measurements included the sagittal parameters pelvic incidence (PI) pelvic tilt (PT), and sacral slope (SS); MR images were used to additionally measure lumbar L1-S1 lordosis and single level lordosis. Differences between radiographic and MRI measurements were analyzed and divided into 4 subgroups of different sacral slope according to Roussouly’s classification.

Results Global lumbar lordosis (L1-S1) was 44.99° (± 10 754) on radiographs and 47.91° (± 9.170) on MRI, yielding a clinically relevant correlation (r = 0.61, p < 0.01). Measurements of single level lordosis only showed minor differences. At all levels except for L5 / S1, lordosis measured by means of standing radiographs was higher than that measured by MRI. The difference in global lumbar L1-S1 lordosis was –2.9°. Analysis of the Roussouly groups showed the largest difference for L1-S1 (–8.3°) in group 2. In group 4, when measured on MRI, L5 / S1 lordosis (25.71°) was lower than L4 / L5 lordosis (27.63°) compared to the other groups.

Conclusions Although measurements of global lumbar lordosis significantly differed between the two scanning technologies, the mean difference was just 2.9°. MRI in supine position may be used for estimating global lumbar lordosis, but single level lordosis should be determined by means of standing radiographs.

Key Points

  • Large difference between radiographic and MRI measurements of level L5 / S1.

  • MRI can be used for estimating global lumbar lordosis.

  • Analysis of single level lordosis necessitates measurement in standing radiographs.

Citation Format

  • Benditz A, Boluki D, Weber M et al. Comparison of Lumbar Lordosis in Lateral Radiographs in Standing Position with supine MR Imaging in consideration of the Sacral Slope. Fortschr Röntgenstr 2017; 189: 233 – 239

Zusammenfassung

Ziel Ziel dieser retrospektiven Studie war es, den Einfluss des „Sacral Slope“ auf den Zusammenhang zwischen der gemessenen lumbalen Lordose in lateralen Röntgenaufnahmen der Wirbelsäule im Stehen und liegenden MRT Aufnahmen zu untersuchen. Dieser Zusammenhang ist in der Literatur weitgehend unbekannt. Bisherige Studien haben Zusammenhänge für die thorakale Wirbelsäule gezeigt, jedoch nicht für die lumbalen Anteile.

Material und Methoden MRT und seitliche Röntgenbilder im Stehen von 63 Patienten ohne momentane Rückenschmerzen oder radiologischen Pathologien der Lendenwirbelsäule wurden untersucht. Die Vermessung der lateralen Röntgenaufnahmen im Stehen beinhaltete die sagittalen Parameter Pelvic Incidence (PI), Pelvic Tilt (PT) und Sacral Slope (SS); zudem wurden im Röntgen und in den MRT Aufnahmen die L1-S1 Lordose und die einzelnen Segmentlordosen gemessen. Die Unterschiede zwischen Röntgen und MRT wurden analysiert und entsprechend der Roussouly Klassifikation in 4 Gruppen mit unterschiedlichem Sacral Slope unterteil.

Ergebnisse Die globale lumbale Lordose (L1-S1) war 44,99° (± 10 754) im Röntgen und 47,91° (± 9,170) im MRT. Das entspricht einer klinisch relevanten Korrelation (r = 0,61, p < 0,01). Die Messung der Segmentlordosen zeigte nur geringe Unterschiede. Außer in L5 / S1 wiesen alle Segmente eine höhere Lordose im Röntgen als im MRT auf. Der mittlere Durchschnitt der globalen Lordose L1-S1 betrug –2,9°. Bezogen auf die Roussouly Gruppen zeigte sich der größte Unterschied in Gruppe 2 für L1-S1 (–8,3°). In Gruppe 4 zeigte sich im MRT eine L5 / S1 Lordose von 25,71°. Diese war im Vergleich zu den anderen Gruppen nur in Gruppe 4 niedriger als die Lordose im Segment L4 / L5 (27,63°).

Schlussfolgerung Obwohl sich die globale Lordose in den beiden Bildgebungsmodalitäten signifikant unterscheidet ist die Differenz nur 2,9°. Liegend-MRT-Aufnahmen können zur Abschätzung der globalen Lordose verwendet werden, dienen jedoch nicht zur Beurteilung einzelner Segmentlordosen, welche daher in lateralen Röntgenaufnahmen im Stehen gemessen werden sollten.

Kernaussagen

  • Im Segment L5 / S1 zeigt sich ein erheblicher Unterschied in beiden Messverfahren.

  • MRT Aufnahmen können verwendet werden, um die globale lumbale Lordose abzuschätzen.

  • Um einzelne Segmentlordosen zu bestimmen benötigt man laterale Röntgenbilder im Stehen.

 
  • References

  • 1 Huec J. Aunoble S. Philippe L. et al. Pelvic parameters: Origin and significance. Eur Spine J 2011; 20 (Suppl. 05) 564-571
  • 2 Le Huec JJ. Roussouly P. Sagittal spino-pelvic balance is a crucial analysis for normal and degenerative spine. Eur spine J September 2011; 20 (Suppl. 05) 556-557
  • 3 Schröder J. Braumann KM. Reer R. Spinal form and function profile: Reference values for clinical use in low back pain. Orthopade 2014; 43: 841-849
  • 4 Bouaicha S. Lamanna C. Jentzsch T. et al. Comparison of the sagittal spine lordosis by supine computed tomography and upright conventional radiographs in patients with spinal trauma. Biomed Res Int 2014; 2014: 967178
  • 5 Wood KB. Kos P. Schendel M. et al. Effect of patient position on the sagittal-plane profile of the thoracolumbar spine. J Spinal Disord 1996; 9: 165-169
  • 6 Andreasen ML. Langhoff L. Jensen TS. et al. Reproduction of the lumbar lordosis: A comparison of standing radiographs versus supine magnetic resonance imaging obtained with straightened lower extremities. J Manipulative Physiol Ther 2007; 30: 26-30
  • 7 Peterson MD. Nelson LM. McManus AC. et al. The effect of operative position on lumbar lordosis. A radiographic study of patients under anesthesia in the prone and 90–90 positions. Spine (Phila Pa 1976) 1995; 20: 1419-1424
  • 8 Mauch F. Jung C. Huth J. et al. Changes in the lumbar spine of athletes from supine to the true-standing position in magnetic resonance imaging. Spine (Phila Pa 1976) 2010; 35: 1002-1007
  • 9 Andreasen ML. Langhoff L. Jensen TS. et al. Reproduction of the lumbar lordosis: A comparison of standing radiographs versus supine magnetic resonance imaging obtained with straightened lower extremities. J Manipulative Physiol Ther 2007; 30: 26-30
  • 10 Shi B. Mao S. Wang Z. et al. How does the supine MRI correlate with standing radiographs of different curve severity in adolescent idiopathic scoliosis?. Spine (Phila Pa 1976) 2015; 40: 1206-1212
  • 11 Lafage R. Ferrero E. Henry JK. et al. Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J 2015; 15: 2493-2502
  • 12 Roussouly P. Gollogly S. Berthonnaud E. et al. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 2005; 30: 346-353
  • 13 Huec J. Charosky S. Barrey C. et al. Sagittal imbalance cascade for simple degenerative spine and consequences: Algorithm of decision for appropriate treatment. European Spine Journal 2011; 20 (Suppl. 05) 699-703
  • 14 Barrey C. Roussouly P. Perrin G. et al. Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms?. Eur Spine J 2011; 20 (Suppl. 05) 626-633
  • 15 Farshad-Amacker NA. Farshad M. Winklehner A. et al. MR imaging of degenerative disc disease. Eur J Radiol 2015; 84: 1768-1776
  • 16 Lee MC. Solomito M. Patel A. Supine magnetic resonance imaging cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs. Spine (Phila Pa 1976) 2013; 38: E656-E661
  • 17 Wessberg P. Danielson BI. Willén J. Comparison of cobb angles in idiopathic scoliosis on standing radiographs and supine axially loaded MRI. Spine (Phila Pa 1976) 2006; 31: 3039-3044
  • 18 Wang F. Sun X. Mao S. et al. MR imaging may serve as a valid alternative to standing radiography in evaluating the sagittal alignment of the upper thoracic spine. J Spinal Disord Tech 2013; 11: 582-585
  • 19 Bernstein P. Hentschel S. Platzek I. et al. The assessment of the postoperative spinal alignment: MRI adds up on accuracy. Eur Spine J 2012; 21: 733-738
  • 20 Cheung K. Karppinen J. Chan D. et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 2009; 34: 934-940
  • 21 Daghighi MH. Poureisa M. Arablou F. et al. Supine spinal magnetic resonance imaging with straightened lower extremities in spondylolisthesis: A comparison with the conventional technique. Eur J Radiol 2015; 84: 921-926
  • 22 Franklin ME. Chenier TC. Brauninger L. et al. Effect of positive heel inclination on posture. J Orthop Sports Phys Ther 1995; 21: 94-99
  • 23 Opila KA. Wagner SS. Schiowitz S. et al. Postural alignment in barefoot and high-heeled stance. Spine (Phila Pa 1976) 1988; 13: 542-547
  • 24 Bendix T. Sørensen SS. Klausen K. Lumbar curve, trunk muscles, and line of gravity with different heel heights. Spine (Phila Pa 1976) 1984; 9: 223-227
  • 25 Russell BS. Muhlenkamp KA. Hoiriis KT. et al. Measurement of lumbar lordosis in static standing posture with and without high-heeled shoes. J Chiropr Med 2012; 11: 145-153
  • 26 de Lateur BJ. Giaconi RM. Questad K. et al. Footwear and posture. Compensatory strategies for heel height. Am J Phys Med Rehabil 1991; 70: 246-254
  • 27 Schäfer S. Alejandre-Lafont E. Schmidt T. et al. Dose management for x-ray and CT: Systematic comparison of exposition values from two institutes to diagnostic reference levels and use of results for optimisation of exposition. Rofo 2014; 186: 785-794
  • 28 Kloth JK. Wiedenhoefer B. Stiller W. et al. Modern digital plain-radiography of the whole spine in scoliosis patients--dose reduction and quality criteria. Rofo 2013; 185: 48-54
  • 29 Rutherford EE. Tarplett LJ. Davies EM. et al. Lumbar spine fusion and stabilization: Hardware, techniques, and imaging appearances. Radiographics 2007; 27: 1737-1749
  • 30 Ha AS. Petscavage-Thomas JM. Imaging of current spinal hardware: Lumbar spine. Am J Roentgenol 2014; 203: 573-581