Aktuelle Neurologie 2017; 44(01): 27-45
DOI: 10.1055/s-0042-124610
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Untersuchungen des visuellen Systems in der Neurologie: aktuelle Forschung und klinische Relevanz

Investigation of the Visual System in Neurology: Current Research and Clinical Relevance
Alexander U. Brandt
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin
,
Hanna Zimmermann
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin
,
Michael Scheel
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin
,
Carsten Finke
2   Klinik für Neurologie, Charité – Universitätsmedizin Berlin
,
Philipp Albrecht
3   Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf
,
Friedemann Paul
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin
2   Klinik für Neurologie, Charité – Universitätsmedizin Berlin
4   Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin und Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
06 March 2017 (online)

Zusammenfassung

Die orientierende Darstellung des afferenten visuellen Systems ist integraler Bestandteil der neurologischen Anamnese und der klinisch neurologischen Untersuchung. Durch die anatomische Zugehörigkeit zum zentralen Nervensystem, das Auftreten von Sehverlust bei vielen neurologischen Erkrankungen, und durch die erhebliche Bedeutung eines Sehverlustes für die Lebensqualität von Betroffenen erfährt die Untersuchung des afferenten visuellen Systems durch moderne diagnostische Verfahren zunehmende Bedeutung. Niedrigkontrast-Sehen oder Farbsehtests können klassische Visustests ergänzen. Mithilfe von multifokal visuell evozierten Potenzialen können einzelne Stränge der Sehbahn untersucht werden. Optische Kohärenztomografie erlaubt die hochaufgelöste Darstellung der Netzhaut mit ihren einzelnen Schichten. Diffusionsbildgebung und funktionelle Magnetresonanztomografie erlauben in der Forschung die mikrostrukturelle und funktionelle Untersuchung des visuellen Systems. Strukturierte Fragebögen können für das Screening auf Sehstörungen genutzt werden. Eine detaillierte Untersuchung des afferenten visuellen Systems gehört zunehmend zur erweiterten neurologischen Untersuchung bei neuroimmunologischen Erkrankungen wie Multiple Sklerose, Neuromyelitis optica, MOG-IgG assoziierter Enzephalomyelitis oder Susac-Syndrom, aber auch beim Parkinson Syndrom oder anderen neurodegenerativen Erkrankungen. Dieser Übersichtsartikel skizziert die Prinzipien der wichtigsten Methoden zur strukturellen und funktionellen Untersuchung des visuellen Systems und fasst exemplarisch die Ergebnisse der Anwendung dieser Methoden bei relevanten neurologischen Erkrankungen zusammen.

Abstract

A preliminary assessment of the afferent visual system is part of neurological history taking and the neurological examination. The afferent visual system including the retina is part of the central nervous system. Many neurological diseases can cause loss of visual function, which is an important determinant of loss of quality of life in affected patients. This has led to an increasing application of state-of-the-art diagnostic methods for investigating the afferent visual system in clinical neurology and neurological research. Low-contrast visual acuity tests and color vision tests can complement classic high-contrast visual testing. Multifocal visual evoked potentials allow assessment of axonal strands. Optical coherence tomography enables high-resolution imaging of the retina and intra-retinal layers. In clinical research, diffusion weighted imaging and functional magnetic resonance imaging can be used for microstructural and functional assessment of neuronal structures and white matter. Structured questionnaires are available to screen for visual function loss. A detailed assessment of the afferent visual system is increasingly part of neurological examinations not only in autoimmune neuroinflammatory disorders like multiple sclerosis, neuromyelitis optica, MOG-IgG associated encephalomyelitis or Susac syndrome, but also in Parkinson’s disease and other neurodegenerative disorders. This review outlines relevant methods for structural and functional assessment of the afferent visual system and summarizes showcases for application of these methods in neurological diseases.

 
  • Literatur

  • 1 Sepúlveda M, Armangué T, Sola-Valls N et al. Neuromyelitis optica spectrum disorders: Comparison according to the phenotype and serostatus. Neurol Neuroimmunol Neuroinflammation 2016; 3: e225
  • 2 Kim S-M, Woodhall MR, Kim J-S et al. Antibodies to MOG in adults with inflammatory demyelinating disease of the CNS. Neurol Neuroimmunol Neuroinflammation 2015; 2: e163
  • 3 Galetta SL, Villoslada P, Levin N et al. Acute optic neuritis. Neurol Neuroimmunol Neuroinflammation 2015; 2: e135
  • 4 Zekeridou A, Lennon VA. Aquaporin-4 autoimmunity. Neurol Neuroimmunol Neuroinflammation 2015; 2: e110
  • 5 Biousse V, Skibell BC, Watts RL et al. Ophthalmologic features of Parkinson’s disease. Neurology 2004; 62: 177-180
  • 6 Stricker S, Oberwahrenbrock T, Zimmermann H et al. Temporal retinal nerve fiber loss in patients with spinocerebellar ataxia type 1. PLoS ONE 2011; 6: e23024
  • 7 Bock M, Paul F, Dörr J. Diagnostik und Verlaufsbeurteilung der Multiplen Sklerose. Nervenarzt 2013; 84: 483-492
  • 8 Webvision [Internet]. [cited 2016 Dec 4]. Available from: http://webvision.med.utah.edu/
  • 9 Ferris FL, Bailey I. Standardizing the measurement of visual acuity for clinical research studies. Ophthalmology 1996; 103: 181-182
  • 10 Baier ML, Cutter GR, Rudick RA et al. Low-contrast letter acuity testing captures visual dysfunction in patients with multiple sclerosis. Neurology 2005; 64: 992-995
  • 11 Pelli DG, Robson JG. The design of a new letter chart for measuring contrast sensitivity. Clin Vis Sci 1988; 2: 187-199
  • 12 Dougherty BE, Flom RE, Bullimore MA. An evaluation of the Mars letter contrast sensitivity test. Optom Vis Sci 2005; 82: 970-975
  • 13 Bock M, Brandt AU, Kuchenbecker J et al. Impairment of contrast visual acuity as a functional correlate of retinal nerve fibre layer thinning and total macular volume reduction in multiple sclerosis. Br J Ophthalmol 2012; 96: 62-67
  • 14 Villoslada P, Cuneo A, Gelfand J et al. Color vision is strongly associated with retinal thinning in multiple sclerosis. Mult Scler J 2012; 18: 991-999
  • 15 Martínez-Lapiscina EH, Ortiz-Pérez S, Fraga-Pumar E et al. Colour vision impairment is associated with disease severity in multiple sclerosis. Mult Scler J 2014; 20: 1207-1216
  • 16 Kolappan M, Henderson APD, Jenkins TM et al. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. J Neurol 2009; 256: 305-319
  • 17 Kertelge L, Brüggemann N, Schmidt A et al. Impaired sense of smell and color discrimination in monogenic and idiopathic Parkinson’s disease. Mov Disord 2010; 25: 2665-2669
  • 18 Kuchenbecker PDJ, Blum M, Paul F. Untersuchung des Farbsehens bei akuter einseitiger Neuritis nervi optici mittels eines webbasierten Farbsehtests. Ophthalmol 2016; 113: 223-229
  • 19 Compston A. The Berger rhythm: potential changes from the occipital lobes in man, by ED Adrian and BHC Matthews (From the Physiological Laboratory, Cambridge). Brain 1934; 57: 355-385 Brain 2010; 133: 3–6
  • 20 Graham SL, Klistorner A. Afferent visual pathways in multiple sclerosis: a review. Clin Experiment Ophthalmol 2017; 45: 62-72
  • 21 Halliday AM, McDonald WI, Mushin J. Delayed visual evoked response in optic neuritis. Lancet 1972; 1: 982-985
  • 22 Brusa A, Jones SJ, Plant GT. Long-term remyelination after optic neuritis. Brain 2001; 124: 468-479
  • 23 Hickman SJ, Toosy AT, Miszkiel KA et al. Visual recovery following acute optic neuritis – a clinical, electrophysiological and magnetic resonance imaging study. J Neurol 2004; 251: 996-1005
  • 24 Ringelstein M, Kleiter I, Ayzenberg I et al. Visual evoked potentials in neuromyelitis optica and its spectrum disorders. Mult Scler J 2014; 20: 617-620
  • 25 Cadavid D, Balcer L, Galetta S et al. Evidence of remyelination with the anti-LINGO-1 monoclonal antibody BIIB033 after acute optic neuritis. AAN 67th Annu Meet Abstr 2015
  • 26 Polman CH, Reingold SC, Banwell B et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol 2011; 69: 292-302
  • 27 Brusa A, Mortimer C, Jones SJ. Clinical evaluation of VEPs to interleaved checkerboard reversal stimulation of central, hemi- and peripheral fields. Electroencephalogr Clin Neurophysiol 1995; 96: 485-494
  • 28 Klistorner AI, Graham SL, Grigg JR et al. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci 1998; 39: 937-950
  • 29 Klistorner A, Leocani L, Islam M et al. Analysis of efficacy by multifocal visual evoked potentials in subjects treated with the anti-LINGO-1 monoclonal antibody BIIB033 in acute optic neuritis: the RENEW trial (P7.208). Neurology 2015; 84: P7.208
  • 30 Aktas O, Vanopdenbosch L, Comi G et al. Anti-LINGO-1 monoclonal antibody BIIB033 improves optic nerve latency in acute optic neuritis: primary efficacy analysis of the RENEW study. Mult Scler J 2015; 52-53
  • 31 Hartmann CJ, Klistorner AI, Brandt AU et al. Axonal damage in papilledema linked to idiopathic intracranial hypertension as revealed by multifocal visual evoked potentials. Clin Neurophysiol 2015; 126: 2040-2041
  • 32 Alshowaeir D, Yiannikas C, Garrick R et al. Latency of multifocal visual evoked potentials in nonoptic neuritis eyes of multiple sclerosis patients associated with optic radiation lesions. Invest. Ophthalmol Vis Sci 2014; 55: 3758-3764
  • 33 Alshowaeir D, Yannikas C, Garrick R et al. Multifocal VEP assessment of optic neuritis evolution. Clin. Neurophysiol Off J Int Fed Clin Neurophysiol 2015; 126: 1617-1623
  • 34 Ziccardi L, Parisi V, Giannini D et al. Multifocal VEP provide electrophysiological evidence of predominant dysfunction of the optic nerve fibers derived from the central retina in Leber’s hereditary optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2015; 253: 1591-1600
  • 35 Klistorner A, Graham S, Fraser C et al. Electrophysiological evidence for heterogeneity of lesions in optic neuritis. Invest Ophthalmol Vis Sci. 2007; 48: 4549-4556
  • 36 Sriram P, Klistorner A, Arvind H et al. Reproducibility of multifocal VEP latency using different stimulus presentations. Doc Ophthalmol Adv Ophthalmol 2012; 125: 43-49
  • 37 Klistorner A, Graham SL. Objective perimetry in glaucoma. Ophthalmology 2000; 107: 2283-2299
  • 38 Laron M, Cheng H, Zhang B et al. Comparison of multifocal visual evoked potential, standard automated perimetry and optical coherence tomography in assessing visual pathway in multiple sclerosis patients. Mult Scler 2010; 16: 412-426
  • 39 Zimmermann H, Oberwahrenbrock T, Brandt AU et al. Optical coherence tomography for retinal imaging in multiple sclerosis. Degener Neurol Neuromuscul Dis 2014; 4: 153-162
  • 40 Petzold A, Wattjes MP, Costello F et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol 2014; 10: 447-458
  • 41 Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science 1991; 254: 1178-1181
  • 42 Bock M, Brandt AU, Dörr J et al. Time domain and spectral domain optical coherence tomography in multiple sclerosis: a comparative cross-sectional study. Mult Scler 2010; 16: 893-896
  • 43 Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechno 2003; 21: 1361-1367
  • 44 Tewarie P, Balk L, Costello F et al. The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment. PLoS ONE 2012; 7: e34823
  • 45 Schippling S, Balk LJ, Costello F et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler J 2015; 21: 163-170
  • 46 Oberwahrenbrock T, Weinhold M, Mikolajczak J et al. Reliability of intra-retinal layer thickness estimates. PLoS ONE 2015; 10: e0137316
  • 47 Cruz-Herranz A, Balk LJ, Oberwahrenbrock T et al. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 2016; 86: 2303-2309
  • 48 Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66: 259-267
  • 49 Hagmann P, Jonasson L, Maeder P et al. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiogr Rev Publ Radiol Soc N Am Inc 2006; 26 (Suppl. 01) S205-S223
  • 50 Roberts TPL, Rowley HA. Diffusion weighted magnetic resonance imaging in stroke. Eur J Radiol 2003; 45: 185-194
  • 51 Sun S-W, Liang H-F, Cross AH et al. Evolving wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. NeuroImage 2008; 40: 1-10
  • 52 Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996; 36: 893-906
  • 53 Belliveau JW, Kennedy DN, McKinstry RC et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991; 254: 716-719
  • 54 Biswal B, Yetkin FZ, Haughton VM et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34: 537-541
  • 55 Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007; 8: 700-711
  • 56 Grodd W, Beckmann CF. Funktionelle MRT des Gehirns im Ruhezustand. Nervenarzt 2014; 85: 690-700
  • 57 Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci 2010; 4: 19
  • 58 Fox MD, Snyder AZ, Vincent JL et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 2005; 102: 9673-9678
  • 59 Beckmann CF, DeLuca M, Devlin JT et al. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005; 360: 1001-1013
  • 60 Pruim RHR, Mennes M, van Rooij D et al. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 2015; 112: 267-277
  • 61 Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009; 10: 186-198
  • 62 Mangione CM, Lee PP, Gutierrez PR et al. Development of the 25-item National Eye Institute visual function questionnaire. Arch Ophthalmol 2001; 119: 1050-1058
  • 63 Franke GH, Esser J, Voigtländer A et al. Der National Eye Institute Visual Function Questionnaire (NEI-VFQ). Erste Ergebnisse zur psychometrischen Überprüfung eines Verfahrens zur Erfassung der Lebensqualität bei Sehbeeinträchtigten. Z Med Psychol 1998; 7: 178-184
  • 64 Kidd DP, Burton BJ, Graham EM et al. Optic neuropathy associated with systemic sarcoidosis. Neurol Neuroimmunol Neuroinflammation 2016; 3: e270
  • 65 Costello F, Coupland S, Hodge W et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59: 963-969
  • 66 Ruprecht K, Klinker E, Dintelmann T et al. Plasma exchange for severe optic neuritis: treatment of 10 patients. Neurology 2004; 63: 1081-1083
  • 67 Gabilondo I, Martínez-Lapiscina EH, Fraga-Pumar E et al. Dynamics of retinal injury after acute optic neuritis. Ann Neurol 2015; 77: 517-528
  • 68 Bennett JL, Nickerson M, Costello F et al. Re-evaluating the treatment of acute optic neuritis. J Neurol Neurosurg Psychiatry 2015; 86: 799-808
  • 69 Walter SD, Ishikawa H, Galetta KM et al. Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology 2012; 119: 1250-1257
  • 70 Schinzel J, Zimmermann H, Paul F et al. Relations of low contrast visual acuity, quality of life and multiple sclerosis functional composite: a cross-sectional analysis. BMC Neurol 2014; 14: 1-8
  • 71 Costello F. Evaluating the use of optical coherence tomography in optic neuritis. Mult Scler Int 2011; 2011: 148394
  • 72 Toosy AT, Mason DF, Miller DH. Optic neuritis. Lancet Neurol 2014; 13: 83-99
  • 73 van der Walt A, Kolbe SC, Wang YE et al. Optic nerve diffusion tensor imaging after acute optic neuritis predicts axonal and visual outcomes. PloS One 2013; 8: e83825
  • 74 Naismith RT, Xu J, Tutlam NT et al. Diffusion tensor imaging in acute optic neuropathies: predictor of clinical outcomes. Arch Neurol 2012; 69: 65-71
  • 75 Scheel M, Finke C, Oberwahrenbrock T et al. Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: A combined optical coherence tomography and diffusion tensor imaging study. Mult Scler J 2014; 20: 1904-1907
  • 76 Frohman EM, Dwyer MG, Frohman T et al. Relationship of optic nerve and brain conventional and non-conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: a pilot study. J Neurol Sci 2009; 282: 96-105
  • 77 Smith SA, Williams ZR, Ratchford JN et al. Diffusion tensor imaging of the optic nerve in multiple sclerosis: association with retinal damage and visual disability. AJNR Am J Neuroradiol 2011; 32: 1662-1668
  • 78 Naismith RT, Xu J, Tutlam NT et al. Disability in optic neuritis correlates with diffusion tensor-derived directional diffusivities. Neurology 2009; 72: 589-594
  • 79 Raz N, Bick AS, Ben-Hur T et al. Focal demyelinative damage and neighboring white matter integrity: an optic neuritis study. Mult Scler J 2015; 21: 562-571
  • 80 Kolbe SC, Marriott M, Walt A et al. Diffusion tensor imaging correlates of visual impairment in multiple sclerosis and chronic optic neuritis. Invest Ophthalmol Vis Sci 2012; 53: 825-832
  • 81 Lobsien D, Ettrich B, Sotiriou K et al. Whole-brain diffusion tensor imaging in correlation to visual-evoked potentials in multiple sclerosis: a tract-based spatial statistics analysis. AJNR Am J Neuroradiol 2014; 35: 2076-2081
  • 82 Frohman EM, Frohman TC, Zee DS et al. The neuro-ophthalmology of multiple sclerosis. Lancet Neurol 2005; 4: 111-121
  • 83 Balcer LJ, Miller DH, Reingold SC et al. Vision and vision-related outcome measures in multiple sclerosis. Brain 2015; 138: 11-27
  • 84 Heesen C, Böhm J, Reich C et al. Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable. Mult Scler 2008; 14: 988-991
  • 85 Petzold A, de Boer JF, Schippling S et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9: 921-932
  • 86 Bock M, Brandt AU, Dörr J et al. Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients. Clin Neurol Neurosurg 2010; 112: 647-652
  • 87 Huhn K, Lämmer R, Oberwahrenbrock T et al. Optical coherence tomography in patients with a history of juvenile multiple sclerosis reveals early retinal damage. Eur J Neurol 2015; 22: 86-92
  • 88 Oberwahrenbrock T, Schippling S, Ringelstein M et al. Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int 2012; 2012: 530305
  • 89 Narayanan D, Cheng H, Bonem KN et al. Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis. Mult Scler J 2014; 20: 1331-1341
  • 90 Petracca M, Cordano C, Cellerino M et al. Retinal degeneration in primary-progressive multiple sclerosis: A role for cortical lesions?. Mult Scler J 2017; 23: 43-50
  • 91 Knier B, Berthele A, Buck D et al. Optical coherence tomography indicates disease activity prior to clinical onset of central nervous system demyelination. Mult Scler J 2016; 22: 893-900
  • 92 Oberwahrenbrock T, Ringelstein M, Jentschke S et al. Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult Scler J 2013; 19: 1887-1895
  • 93 Lange AP, Zhu F, Sayao A-L et al. Retinal nerve fiber layer thickness in benign multiple sclerosis. Mult Scler J 2013; 19: 1275-1281
  • 94 Saidha S, Sotirchos ES, Ibrahim MA et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 2012; 11: 963-972
  • 95 Martinez-Lapiscina EH, Arnow S, Wilson JA et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol 2016; 15: 574-584
  • 96 Knier B, Schmidt P, Aly L et al. Retinal inner nuclear layer volume reflects response to immunotherapy in multiple sclerosis. Brain 2016; 139: 2855-2863
  • 97 Talman LS, Bisker ER, Sackel DJ et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 2010; 67: 749-760
  • 98 Ratchford JN, Saidha S, Sotirchos ES et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology 2013; 80: 47-54
  • 99 Balk LJ, Cruz-Herranz A, Albrecht P et al. Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study. J Neurol 2016; 263: 1323-1331
  • 100 Dörr J, Wernecke KD, Bock M et al. Association of retinal and macular damage with brain atrophy in multiple sclerosis. PloS One 2011; 6: e18132
  • 101 Zimmermann H, Freing A, Kaufhold F et al. Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Mult Scler J 2013; 19: 443-450
  • 102 Young KL, Brandt AU, Petzold A et al. Loss of retinal nerve fibre layer axons indicates white but not grey matter damage in early multiple sclerosis. Eur J Neurol 2013; 20: 803-811
  • 103 Saidha S, Sotirchos ES, Oh J et al. Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol 2013; 70: 34-43
  • 104 Saidha S, Al-Louzi O, Ratchford JN et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study. Ann Neurol 2015; 78: 801-813
  • 105 Gelfand JM, Nolan R, Schwartz DM et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 2012; 135: 1786-1793
  • 106 Kaufhold F, Zimmermann H, Schneider E et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS ONE 2013; 8: e71145
  • 107 Brandt AU, Oberwahrenbrock T, Kadas EM et al. Dynamic formation of macular microcysts independent of vitreous traction changes. Neurology 2014; 83: 73-77
  • 108 Saidha S, Syc SB, Ibrahim MA et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134: 518-533
  • 109 Brandt AU, Oberwahrenbrock T, Ringelstein M et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134: e193-e193
  • 110 Nolan R, Gelfand JM, Green AJ. Fingolimod treatment in multiple sclerosis leads to increased macular volume. Neurology 2013; 80: 139-144
  • 111 Schröder K, Finis D, Harmel J et al. Acetazolamide therapy in a case of fingolimod-associated macular edema: early benefits and long-term limitations. Mult Scler Relat Disord 2015; 4: 406-408
  • 112 Li V, Kane J, Chan HHL et al. Continuing fingolimod after development of macular edema: A case report. Neurol Neuroimmunol Neuroinflammation 2014; 1: e13
  • 113 Dinkin M, Paul F. Higher macular volume in patients with MS receiving fingolimod Positive outcome or side effect?. Neurology 2013; 80: 128-129
  • 114 Marmor MF. A brief history of macular grids: from Thomas Reid to Edvard Munch and Marc Amsler. Surv Ophthalmol 2000; 44: 343-353
  • 115 Sriram P, Wang C, Yiannikas C et al. Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients. PloS One 2014; 9: e102546
  • 116 Maggio GD, Santangelo R, Guerrieri S et al. Optical coherence tomography and visual evoked potentials: which is more sensitive in multiple sclerosis?. Mult Scler J 2014; 20: 1342-1347
  • 117 Rocca MA, Mesaros S, Preziosa P et al. Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. Mult Scler J 2013; 19: 1610-1617
  • 118 Kolbe S, Bajraszewski C, Chapman C et al. Diffusion tensor imaging of the optic radiations after optic neuritis. Hum Brain Mapp 2012; 33: 2047-2061
  • 119 Balk LJ, Steenwijk MD, Tewarie P et al. Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J Neurol Neurosurg Psychiatry 2015; 86: 419-424
  • 120 Raz N, Chokron S, Ben-Hur T et al. Temporal reorganization to overcome monocular demyelination. Neurology 2013; 81: 702-709
  • 121 Li M, Li J, He H et al. Directional diffusivity changes in the optic nerve and optic radiation in optic neuritis. Br J Radiol 2011; 84: 304-314
  • 122 Pfueller CF, Brandt AU, Schubert F et al. Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PloS One 2011; 6: e18019
  • 123 Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 2014; 75: 98-107
  • 124 Harrison DM, Shiee N, Bazin P-L et al. Tract-specific quantitative MRI better correlates with disability than conventional MRI in multiple sclerosis. J Neurol 2013; 260: 397-406
  • 125 Klistorner A, Sriram P, Vootakuru N et al. Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology 2014; 82: 2165-2172
  • 126 Reich DS, Smith SA, Gordon-Lipkin EM et al. Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. Arch Neurol 2009; 66: 998-1006
  • 127 Sinnecker T, Oberwahrenbrock T, Metz I et al. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study. Eur Radiol 2014; 1-10
  • 128 Sinnecker T, Kuchling J, Dusek P et al. Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA J 2015; 6: 16
  • 129 Kuchling J, Sinnecker T, Bozin I et al. Ultrahochfeld-MRT im Kontext neurologischer Erkrankungen. Nervenarzt 2014; 85: 445-458
  • 130 Gallo A, Esposito F, Sacco R et al. Visual resting-state network in relapsing-remitting MS with and without previous optic neuritis. Neurology 2012; 79: 1458-1465
  • 131 Wu GF, Brier MR, Parks CA-L et al. An Eye on Brain Integrity: Acute Optic Neuritis Affects Resting State Functional Connectivity. Invest Ophthalmol Vis Sci 2015; 56: 2541-2546
  • 132 Trebst C, Jarius S, Berthele A et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 2014; 261: 1-16
  • 133 Metz I, Beißbarth T, Ellenberger D et al. Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis. Neurol Neuroimmunol Neuroinflammation 2016; 3: e204
  • 134 Melamed E, Levy M, Waters PJ et al. Update on biomarkers in neuromyelitis optica. Neurol Neuroimmunol Neuroinflammation 2015; 2: e134
  • 135 Sinnecker T, Schumacher S, Mueller K et al. MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T. Neurol Neuroimmunol Neuroinflammation 2016; 3: e259
  • 136 Chavarro VS, Mealy MA, Simpson A et al. Insufficient treatment of severe depression in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflammation 2016; 3: e286
  • 137 Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 2014; 176: 149-164
  • 138 Wingerchuk DM, Banwell B, Bennett JL et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85: 177-189
  • 139 Yamasaki R, Matsushita T, Fukazawa T et al. Efficacy of intravenous methylprednisolone pulse therapy in patients with multiple sclerosis and neuromyelitis optica. Mult Scler J 2016; 22: 1337-1348
  • 140 Kleiter I, Gahlen A, Borisow N et al. Neuromyelitis optica: Evaluation of 871 attacks and 1 153 treatment courses. Ann Neurol 2016; 79: 206-216
  • 141 Bennett JL, de Seze J, Lana-Peixoto M et al. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography. Mult Scler J 2015; 21: 678-688
  • 142 Schneider E, Zimmermann H, Oberwahrenbrock T et al. Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS ONE 2013; 8: e66151
  • 143 Sotirchos ES, Saidha S, Byraiah G et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 2013; 80: 1406-1414
  • 144 Schmidt F, Zimmermann H, Mikolajczak J et al. Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2017; 11: 45-50
  • 145 Finke C, Heine J, Pache F et al. Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD. Neurol Neuroimmunol Neuroinflammation 2016; 3: e229
  • 146 Ventura RE, Kister I, Chung S et al. Cervical spinal cord atrophy in NMOSD without a history of myelitis or MRI-visible lesions. Neurol Neuroimmunol Neuroinflammation 2016; 3: e224
  • 147 Ramanathan S, Prelog K, Barnes EH et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler J 2016; 22: 470-482
  • 148 Nakamura M, Nakazawa T, Doi H et al. Early high-dose intravenous methylprednisolone is effective in preserving retinal nerve fiber layer thickness in patients with neuromyelitis optica. Graefes Arch Clin Exp Ophthalmol 2010; 248: 1777-1785
  • 149 Merle H, Olindo S, Jeannin S et al. Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica. Arch Ophthalmol 2012; 130: 858-862
  • 150 Liu Y, Duan Y, He Y et al. A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations. Mult Scler J 2012; 18: 1013-1021
  • 151 Yu C, Lin F, Li K et al. Pathogenesis of normal-appearing white matter damage in neuromyelitis optica: diffusion-tensor MR imaging. Radiology 2008; 246: 222-228
  • 152 Yu CS, Lin FC, Li KC et al. Diffusion tensor imaging in the assessment of normal-appearing brain tissue damage in relapsing neuromyelitis optica. AJNR Am J Neuroradiol 2006; 27: 1009-1015
  • 153 Doring TM, Lopes FCR, Kubo TTA et al. Neuromyelitis optica: a diffusional kurtosis imaging study. AJNR Am J Neuroradiol 2014; 35: 2287-2292
  • 154 Pache F, Zimmermann H, Finke C et al. Brain parenchymal damage in neuromyelitis optica spectrum disorder – A multimodal MRI study. Eur Radiol 2016; 1-10
  • 155 Rueda Lopes FC, Doring T, Martins C et al. The role of demyelination in neuromyelitis optica damage: diffusion-tensor MR imaging study. Radiology 2012; 263: 235-242
  • 156 Liu Y, Duan Y, He Y et al. Altered topological organization of white matter structural networks in patients with neuromyelitis optica. PloS One 2012; 7: e48846
  • 157 Rocca MA, Valsasina P, Pagani E et al. Extra-visual functional and structural connection abnormalities in Leber’s hereditary optic neuropathy. PloS One 2011; 6: e17081
  • 158 Schoonheim MM, Filippi M. Functional plasticity in MS: friend or foe?. Neurology 2012; 79: 1418-1419
  • 159 Jarius S, Ruprecht K, Kleiter I et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation 2016; 13: 279
  • 160 Jarius S, Ruprecht K, Kleiter I et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016; 13: 280
  • 161 Jarius S, Kleiter I, Ruprecht K et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement – frequency, presentation and outcome. J Neuroinflammation 2016; 13: 281
  • 162 Pache F, Zimmermann H, Mikolajczak J et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflammation 2016; 13: 282
  • 163 Chalmoukou K, Alexopoulos H, Akrivou S et al. Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis. Neurol Neuroimmunol Neuroinflammation 2015; 2: e131
  • 164 Waters P, Woodhall M, O’Connor KC et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflammation 2015; 2: e89
  • 165 Ramanathan S, Reddel SW, Henderson A et al. Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis. Neurol Neuroimmunol Neuroinflammation 2014; 1: e40
  • 166 Spadaro M, Gerdes LA, Krumbholz M et al. Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurol Neuroimmunol Neuroinflammation 2016; 3: e257
  • 167 Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder?. Neurol Neuroimmunol Neuroinflammation 2015; 22: e62
  • 168 Reindl M, Rostasy K. MOG antibody-associated diseases. Neurol Neuroimmunol Neuroinflammation 2015; 2: e60
  • 169 Dörr J, Radbruch H, Bock M et al. Encephalopathy, visual disturbance and hearing loss – recognizing the symptoms of Susac syndrome. Nat Rev Neurol 2009; 5: 683-688
  • 170 Dörr J, Krautwald S, Wildemann B et al. Characteristics of Susac syndrome: a review of all reported cases. Nat Rev Neurol 2013; 9: 307-316
  • 171 Kleffner I, Dörr J, Ringelstein M et al. Diagnostic criteria for Susac syndrome. J Neurol Neurosurg Psychiatry 2016; 87: 1287-1295
  • 172 Zhovtis Ryerson L, Kister I, Snuderl M et al. Incomplete Susac syndrome exacerbated after natalizumab. Neurol Neuroimmunol Neuroinflammation 2015; 2: e151
  • 173 Brandt AU, Zimmermann H, Kaufhold F et al. Patterns of retinal damage facilitate differential diagnosis between susac syndrome and MS. PLoS ONE 2012; 7: e38741
  • 174 Brandt AU, Oberwahrenbrock T, Costello F et al. Retinal lesion evolution in susac syndrome. Retina 2016; 36: 366-374
  • 175 Ringelstein M, Albrecht P, Kleffner I et al. Retinal pathology in Susac syndrome detected by spectral-domain optical coherence tomography. Neurology 2015; 85: 610-618
  • 176 Heine J, Prüss H, Bartsch T et al. Imaging of autoimmune encephalitis – Relevance for clinical practice and hippocampal function. Neuroscience 2015; 309: 68-83
  • 177 Finke C, Kopp UA, Pajkert A et al. Structural hippocampal damage following anti-N-methyl-D-aspartate receptor encephalitis. Biol Psychiatry 2016; 79: 727-734
  • 178 Finke C, Kopp UA, Scheel M et al. Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2013; 74: 284-296
  • 179 Kreye J, Wenke NK, Chayka M et al. Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain 2016; 139: 2641-2652
  • 180 Borisow N, Prüss H, Paul F. Therapieoptionen bei immunvermittelten Enzephalomyelitiden. Nervenarzt 2013; 84: 461-465
  • 181 Bodis-Wollner I. Retinopathy in Parkinson disease. J Neural Transm (Vienna) 2009; 116: 1493-1501
  • 182 Büttner T, Kuhn W, Patzold T et al. L-dopa improves colour vision in Parkinson’s disease. J Neural Transm – Park Dis Dement Sect 1994; 7: 13-19
  • 183 Yu J-G, Feng Y-F, Xiang Y et al. Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PloS One 2014; 9: e85718
  • 184 Roth NM, Saidha S, Zimmermann H et al. Photoreceptor layer thinning in idiopathic Parkinson’s disease: Photoreceptors in Parkinson’s Disease. Mov Disord 2014; 29: 1163-1170
  • 185 Pula JH, Towle VL, Staszak VM et al. Retinal nerve fibre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuro-Ophthalmol 2011; 35: 108-114
  • 186 Roth NM, Saidha S, Zimmermann H et al. Optical coherence tomography does not support optic nerve involvement in amyotrophic lateral sclerosis. Eur J Neurol 2013
  • 187 Ringelstein M, Albrecht P, Südmeyer M et al. Subtle retinal pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2014; 1: 290-297
  • 188 Berisha F, Feke GT, Trempe CL et al. Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 2007; 48: 2285-2289
  • 189 Bayer AU, Ferrari F, Erb C. High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol 2002; 47: 165-168