CC BY 4.0 · Eur J Dent 2023; 17(03): 881-888
DOI: 10.1055/s-0042-1748529
Original Article

Gingival Mesenchymal Stem Cells Metabolite Decreasing TRAP, NFATc1, and Sclerostin Expression in LPS-Associated Inflammatory Osteolysis In Vivo

Alexander Patera Nugraha
1   Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
2   Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Nastiti Faradilla Ramadhani
1   Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
3   Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Wibi Riawan
4   Department of Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
,
Igo Syaiful Ihsan
5   Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Surabaya, Indonesia
,
Diah Savitri Ernawati
6   Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Rini Devijanti Ridwan
7   Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Ida Bagus Narmada
1   Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
2   Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Tania Saskianti
8   Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Fianza Rezkita
9   Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Andari Sarasati
9   Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Tengku Natasha Eleena Binti Tengku Ahmad Noor
10   Membership Faculty of Dental Surgery, Royal Collage of Surgery, Edinburgh University, UK
,
Bilqis Inayatillah
11   Department of Basic Medical of Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Albertus Putera Nugraha
12   Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Florentina Joestandari
13   Faculty of Dentistry, Institute of Health Bhakti Wiyata, Kediri, Indonesia
› Author Affiliations
Funding This study was supported by Hibah Internal Penelitian Dosen Pemula (PDP) 2021 with appointment number 212/UN3/2021 Universitas Airlangga, Surabaya, East Java, Indonesia.

Abstract

Objective Bone is a dynamic tissue that undergoes remodeling. During bone remodeling, there are transcription factors such as nuclear factor-activated T cells-1 (NFATc1), sclerostin, and tartrate-resistant acid phosphatase (TRAP) that are released for bone resorption. Metabolite from gingival mesenchymal stem cells (GMSCs) has the ability to activate proliferation, migration, immunomodulation, and tissue regeneration of bone cells and tissues. Furthermore, the aim of this study is to investigate the metabolite of GMSCs' effect on expression of NFATc1, TRAP, and sclerostin in calvaria bone resorption of Wistar rats.

Materials and Methods Twenty male healthy Wistar rats (Rattus norvegicus), 1 to 2 months old, 250 to 300 g body were divided into four groups, namely group 1 (G1): 100 µg phosphate-buffered saline day 1 to 7; group 2 (G2): 100 μg lipopolysaccharide (LPS) day 1 to 7; group 3 (G3): 100 μg LPS + 100 μg GMSCs metabolite day 1 to 7; and group 4 (G4): 100 μg GMSCs metabolite day 1 to 7. Escherichia coli LPS was used to induce inflammatory osteolysis on the calvaria with subcutaneous injection. GMSCs metabolite was collected after passage 4 to 5, then injected subcutaneously on the calvaria. All samples were sacrificed on the day 8 through cervical dislocation. The expression of TRAP, NFATc1, and sclerostin of osteoclast in the calvaria was observed with 1,000× magnification.

Statistical Analysis One-way analysis of variance and Tukey honest significant different were conducted to analyze differences between groups (p < 0.05).

Results The administration of GMSCs metabolite can significantly decrease TRAP, NFATc1, and sclerostin expression (p < 0.05) in LPS-associated inflammatory osteolysis calvaria in Wistar rats (R. norvegicus). There were significantly different TRAP, NFATc1, and sclerostin expressions between groups (p < 0.05).

Conclusion GMSCs metabolite decrease TRAP, NFATc1, and sclerostin expression in LPS-associated osteolysis calvaria in Wistar rats (R. norvegicus) as documented immunohistochemically.



Publication History

Article published online:
21 June 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells 2020; 9 (09) 2073
  • 2 Charles JF, Aliprantis AO. Osteoclasts: more than ‘bone eaters’. Trends Mol Med 2014; 20 (08) 449-459
  • 3 Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 2014; 21 (04) 233-241
  • 4 Wehrhan F, Gross C, Creutzburg K. et al. Osteoclastic expression of higher-level regulators NFATc1 and BCL6 in medication-related osteonecrosis of the jaw secondary to bisphosphonate therapy: a comparison with osteoradionecrosis and osteomyelitis. J Transl Med 2019; 17 (01) 69
  • 5 Cao X. RANKL-RANK signaling regulates osteoblast differentiation and bone formation. Bone Res 2018; 6 (01) 35
  • 6 Wang JS, Mazur CM, Wein MN. Sclerostin and osteocalcin: candidate bone-produced hormones. Front Endocrinol (Lausanne) 2021; 12: 584147
  • 7 Lewiecki EM. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther Adv Musculoskelet Dis 2014; 6 (02) 48-57
  • 8 Kuo TH, Lin WH, Chao JY. et al. Serum sclerostin levels are positively related to bone mineral density in peritoneal dialysis patients: a cross-sectional study. BMC Nephrol 2019; 20 (01) 266
  • 9 Ishibashi H, Crittenden DB, Miyauchi A. et al. Romosozumab increases bone mineral density in postmenopausal Japanese women with osteoporosis: a phase 2 study. Bone 2017; 103: 209-215
  • 10 Nugraha AP, Purwati, Susilowati H. et al. Medicinal signaling cells metabolite oral based as a potential biocompatible biomaterial accelerating oral ulcer healing (in vitro study). Eur Dent J 2019; 13 (03) 432-436
  • 11 Sagaradze G, Grigorieva O, Nimiritsky P. et al. Conditioned medium from human mesenchymal stromal cells: towards the clinical translation. Int J Mol Sci 2019; 20 (07) 165
  • 12 Montero-Vilchez T, Sierra-Sánchez Á, Sanchez-Diaz M. et al. Mesenchymal stromal cell-conditioned medium for skin diseases: a systematic review. Front Cell Dev Biol 2021; 9: 654210
  • 13 Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18 (09) 1852
  • 14 Joseph A, Baiju I, Bhat IA. et al. Mesenchymal stem cell-conditioned media: a novel alternative of stem cell therapy for quality wound healing. J Cell Physiol 2020; 235 (7-8): 5555-5569
  • 15 Hoogduijn MJ, Dor FJ. Mesenchymal stem cells: are we ready for clinical application in transplantation and tissue regeneration?. Front Immunol 2013; 4: 144
  • 16 Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant 2019; 28 (07) 801-812
  • 17 El Moshy S, Radwan IA, Rady D. et al. Dental stem cell-derived secretome/conditioned medium: the future for regenerative therapeutic applications. Stem Cells Int 2020; 2020: 7593402
  • 18 Ramadhani N, Nugraha A, Ihsan I. et al. Gingival medicinal signaling cells conditioned medium effect on the osteoclast and osteoblast number in lipopolysaccharide-induced calvaria bone resorption in Wistar rats' (Rattus norvegicus). Research Journal of Pharmacy and Technology 2021; 14 (10) 5232-5237
  • 19 Nugraha AP, Kitaura H, Ohori F. et al. C–X–C receptor 7 agonist acts as a C–X–C motif chemokine ligand 12 inhibitor to ameliorate osteoclastogenesis and bone resorption. Mol Med Rep 2022; 25 (03) 78
  • 20 Al Qranei MS, Senbanjo LT, Aljohani H, Hamza T, Chellaiah MA. Lipopolysaccharide- TLR-4 axis regulates osteoclastogenesis independent of RANKL/RANK signaling. BMC Immunol 2021; 22 (01) 1-16
  • 21 Gugliandolo A, Fonticoli L, Trubiani O. et al. Oral bone tissue regeneration: Mesenchymal stem cells, metabolite, and biomaterials. Int J Mol Sci 2021; 22 (10) 5236
  • 22 Wu H, Hu B, Zhou X. et al. Artemether attenuates LPS-induced inflammatory bone loss by inhibiting osteoclastogenesis and bone resorption via suppression of MAPK signaling pathway. Cell Death Dis 2018; 9 (05) 498
  • 23 Hotokezaka H, Sakai E, Ohara N. et al. Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-α, lipopolysaccharide, or peptidoglycan. J Cell Biochem 2007; 101 (01) 122-134
  • 24 Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res 2015; 2015 (615486): 615486
  • 25 Sakuma Y, Tanaka K, Suda M. et al. Impaired bone resorption by lipopolysaccharide in vivo in mice deficient in the prostaglandin E receptor EP4 subtype. Infect Immun 2000; 68 (12) 6819-6825
  • 26 Kishimoto T, Kaneko T, Ukai T. et al. Peptidoglycan and lipopolysaccharide synergistically enhance bone resorption and osteoclastogenesis. J Periodontal Res 2012; 47 (04) 446-454
  • 27 Li L, Park YR, Shrestha SK, Cho HK, Soh Y. Suppression of inflammation, osteoclastogenesis and bone loss by PZRAS extract. J Microbiol Biotechnol 2020; 30 (10) 1543-1551
  • 28 Luo Y, Wu W, Gu J. et al. Human gingival tissue-derived MSC suppress osteoclastogenesis and bone erosion via CD39-adenosine signal pathway in autoimmune arthritis. EBioMedicine 2019; 43: 620-631
  • 29 Liao C, Wang Y, Ou Y, Wu Y, Zhou Y, Liang S. Effects of sclerostin on lipopolysaccharide-induced inflammatory phenotype in human odontoblasts and dental pulp cells. Int J Biochem Cell Biol 2019; 117: 105628
  • 30 Li TJ, Wang R, Li QY, Li CY, Jiang L. Sclerostin regulation: a promising therapy for periodontitis by modulating alveolar bone. Chin Med J (Engl) 2020; 133 (12) 1456-1461
  • 31 Mihara A, Yukata K, Seki T. et al. Effects of sclerostin antibody on bone healing. World J Orthop 2021; 12 (09) 651-659
  • 32 Baek K, Hwang HR, Park HJ. et al. TNF-α upregulates sclerostin expression in obese mice fed a high-fat diet. J Cell Physiol 2014; 229 (05) 640-650
  • 33 Kim JH, Kim AR, Choi YH. et al. Tumor necrosis factor-α antagonist diminishes osteocytic RANKL and sclerostin expression in diabetes rats with periodontitis. PLoS One 2017; 12 (12) e0189702
  • 34 Al-Qadhi G, Al-Rai S, Hafed L. The therapeutic potential of inflamed gingiva-derived mesenchymal stem cells in preclinical studies: a scoping review of a unique biomedical waste. Stem Cells Int 2021; 2021 (6619170): 6619170
  • 35 Hayman AR. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 2008; 41 (03) 218-223
  • 36 Ohori F, Kitaura H, Marahleh A. et al. Effect of TNF-α-induced sclerostin on osteocytes during orthodontic tooth movement. J Immunol Res 2019; 2019: 9716758
  • 37 Boorsma CE, van der Veen TA, Putri KSS. et al. A potent tartrate resistant acid phosphatase inhibitor to study the function of TRAP in alveolar macrophages. Sci Rep 2017; 7 (01) 12570
  • 38 Diomede F, Gugliandolo A, Scionti D. et al. Biotherapeutic effect of gingival stem cells conditioned medium in bone tissue restoration. Int J Mol Sci 2018; 19 (02) 329
  • 39 Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 2012; 18 (13-14): 1479-1489