Synlett 2023; 34(13): 1577-1580
DOI: 10.1055/s-0042-1751351
cluster
2021 Lanzhou University/Thieme Chemistry Symposium Cluster

Enantioselective Oxidative Dearomatization of 2-Naphthols ­Enabled by Chiral Organoiodine Catalysis

Dong-Yang Zhang
,
Liu-Zhu Gong
National Natural Science Foundation of China (22188101).


Abstract

An asymmetric dearomatizative oxidation of 2-naphthol derivatives has been established by organoiodine catalysis, enabling a series of chiral spirooxindoles with various functional groups to be accessed in high yields and high enantioselectivities under mild conditions.

Supporting Information



Publication History

Received: 06 April 2022

Accepted after revision: 05 July 2022

Article published online:
01 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Ponpipom MM, Bugianesi RL, Brooker DR, Yue B.-z, Hwang S.-b, Shen T.-y. J. Med. Chem. 1987; 30: 136
    • 1b Suzuki T, Watanabe S, Uyanik M, Ishihara K, Kobayashi S, Tanino K. Org. Lett. 2018; 20: 3919
    • 1c Yu M, Snider BB. Org. Lett. 2011; 13: 4224
  • 2 Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068

    • For reviews, see:
    • 3a Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
    • 3b Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
    • 3c Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
    • 3d Zheng C, You S.-L. ACS Cent. Sci. 2021; 7: 432
  • 4 Nemoto T, Ishige Y, Yoshida M, Kohno Y, Kanematsu M, Hamada Y. Org. Lett. 2010; 12: 5020
  • 5 Wu Q.-F, Liu W.-B, Zhuo C.-X, Rong Z.-Q, Ye K.-Y, You S.-L. Angew. Chem. Int. Ed. 2011; 50: 4455
    • 6a Zhuo C.-X, You S.-L. Angew. Chem. Int. Ed. 2013; 52: 10056
    • 6b Wang Y, Zhang W.-Y, Xie J.-H, Yu Z.-L, Tan J.-H, Zheng C, Hou X.-L, You S.-L. J. Am. Chem. Soc. 2020; 142: 19354
  • 7 Rousseaux S, García-Fortanet J, Del Aguila Sanchez MA, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 9282
  • 8 Du K, Guo P, Chen Y, Cao Z, Wang Z, Tang W. Angew. Chem. Int. Ed. 2015; 54: 3033
  • 9 Yang L, Zheng H, Luo L, Nan J, Liu J, Wang Y, Luan X. J. Am. Chem. Soc. 2015; 137: 4876
  • 10 Zheng J, Wang S.-B, Zheng C, You S.-L. J. Am. Chem. Soc. 2015; 137: 4880

    • For selected examples, see:
    • 11a Phipps RJ, Toste FD. J. Am. Chem. Soc. 2013; 135: 1268
    • 11b Wang S.-G, Yin Q, Zhuo C.-X, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 647
    • 11c Xia Z.-L, Zheng C, Xu R.-Q, You S.-L. Nat. Commun. 2019; 10: 3150
    • 11d Yang B, Zhai X, Feng S, Hu D, Deng Y, Shao Z. Org. Lett. 2019; 21: 330
    • 12a Qi J, Beeler AB, Zhang Q, Porco JA. J. Am. Chem. Soc. 2010; 132: 13642
    • 12b Yin Q, Wang S.-G, Liang X.-W, Gao D.-W, Zheng J, You S.-L. Chem. Sci. 2015; 6: 4179
    • 12c Wang S.-G, Liu X.-J, Zhao Q.-C, Zheng C, Wang S.-B, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 14929

      For reviews, see:
    • 13a Uyanik M, Ishihara K. ChemCatChem 2012; 4: 177
    • 13b Parra A. Chem. Rev. 2019; 119: 12033
    • 13c Wang Y, Yang B, Wu X.-X, Wu Z.-G. Synthesis 2021; 53: 889

    • For selected examples, see:
    • 13d Uyanik M, Okamoto H, Yasui T, Ishihara K. Science 2010; 328: 1376
    • 13e Uyanik M, Suzuki D, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2011; 50: 5331
    • 13f Uyanik M, Hayashi H, Ishihara K. Science 2014; 345: 291
    • 13g Wu H, He Y.-P, Xu L, Zhang D.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2014; 53: 3466
    • 13h Cao Y, Zhang X, Lin G, Zhang-Negrerie D, Du Y. Org. Lett. 2016; 18: 5580
    • 13i Banik SM, Medley JW, Jacobsen EN. Science 2016; 353: 51
    • 13j Woerly M, Banik SM, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13858
    • 13k Haubenreisser S, Woste TH, Martinez C, Ishihara K, Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 413
    • 13l Mennie KM, Banik SM, Reichert EC, Jacobsen EN. J. Am. Chem. Soc. 2018; 140: 4797
    • 13m Ding Q, He H, Cai Q. Org. Lett. 2018; 20: 4554
    • 13n Zhang D.-Y, Zhang Y, Wu H, Gong L.-Z. Angew. Chem. Int. Ed. 2019; 58: 7450
    • 13o Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2020; 59: 15069
    • 13p Meyer S, Häfliger J, Schäfer M, Molloy JJ, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2021; 60: 6430
    • 14a Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 14b Zhdankin VV. ARKIVOC 2009; (i): 1
    • 14c Zhdankin VV. J. Org. Chem. 2011; 76: 1185
    • 14d Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
    • 14e Farid U, Malmedy F, Claveau R, Albers L, Wirth T. Angew. Chem. Int. Ed. 2013; 52: 7018
    • 14f Singh FV, Wirth T. Chem. Asian J. 2014; 9: 950
    • 14g Mizar P, Wirth T. Angew. Chem. Int. Ed. 2014; 53: 5993
    • 14h Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 14i Qurban JH, Elsherbini M, Wirth T. J. Org. Chem. 2017; 82: 11872
    • 14j Santi M, Ould DM. C, Wenz J, Soltani Y, Melen RL, Wirth T. Angew. Chem. Int. Ed. 2019; 58: 7861
    • 14k Ishihara K, Muñiz K. Iodine Catalysis in Organic Synthesis . Wiley-VCH; Weinheim: 2022
    • 15a Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 15b Quideau S, Lyvinec G, Marguerit M, Bathany K, Ozanne-Beaudenon A, Buffeteau T, Cavagnat D, Chenede A. Angew. Chem. Int. Ed. 2009; 48: 4605
    • 15c Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
    • 15d Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 9215
    • 15e Zhang D.-Y, Xu L, Wu H, Gong L.-Z. Chem. Eur. J. 2015; 21: 10314
    • 15f Muñiz K, Fra L. Synthesis 2017; 49: 2901
    • 15g Uyanik M, Sasakura N, Mizuno M, Ishihara K. ACS Catal. 2017; 7: 872
    • 15h Hashimoto H, Shimazaki Y, Omatsu Y, Maruoka K. Angew. Chem. Int. Ed. 2018; 57: 7200
    • 15i Uyanik M, Kato T, Sahara N, Katade O, Ishihara K. ACS Catal. 2019; 9: 11619

      For reviews, see:
    • 16a Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 16b Cao Z.-Y, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
    • 16c Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
  • 17 Typical Procedure for the Synthesis of (S)-1-methyl-2′H-spiro[indoline-3,1′-naphthalene]-2,2′-dione (2a)Under N2, the Schlenk tube was charged with 3-chloroperoxybenzoic acid (26.3 mg, 0.13 mmol, 1.3 equiv), 1a (27.7 mg, 0.1 mmol, 1.0 equiv), and organoiodine 3f (12.0 mg, 0.02 mmol, 0.2 equiv). Then, trifluoromethanesulfonic acid (5.3 mg, 0.035 mmol, 0.35 equiv) was added with MeNO2 (1.0 mL) dropwise to the reaction mixture at 25 °C. After the addition was complete, the resulting mixture was stirred at room temperature for 6 h. Afterwards, the solvent was evaporated, and the residue was purified by column chromatography on silica gel (EtOAc/dichloromethane = 1/20) to give the product 2a; yield 80%, 22.1 mg.1H NMR (500 MHz, CDCl3): δ = 7.58–7.56 (m, 1 H), 7.37–7.12 (m, 4 H), 6.98–6.81 (m, 3 H), 6.68 (m, 1 H), 6.18 (d, J = 9.9 Hz, 1 H), 3.22 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 193.6, 171.9, 146.0, 143.7, 137.5, 129.7, 129.6, 129.1, 129.0, 128.2, 127.4, 126.5, 123.5, 122.7, 122.3, 108.0, 66.1, 25.9. IR (KBr): ν = 1719, 1707, 1655, 1600, 1560, 1229, 747, 736, 457 cm–1. HRMS (ESI): m/z [M + Na]+ calcd for C17H18ONa: 261.1255; found: 261.1249. HRMS (ESI): m/z [M + H]+ calcd for C18H14NO2: 276.1025; found: 276.1023. Enantiomeric ratio: 95.4:4.6, determined by HPLC (Daicel Chirapak IE, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): tmaj = 17.72 min, tmin = 25.20 min. [α]20D = –133.1 (c = 0.40, acetone).
  • 18 CCDC 2110235 ((S)-2a) contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures