Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(16): 1665-1669
DOI: 10.1055/s-0042-1751364
DOI: 10.1055/s-0042-1751364
letter
Metal–Organic Framework Derived Cobalt Oxide Supported Bimetallic Pd/Cu Nanoparticles for Efficient Catalysis of the Sonogashira Reaction under Aerobic Conditions
This work was financially supported by scientific and technological projects of China National Offshore Oil Corporation (CNOOC-KJ 145 ZDXM 12 TJY 005 TJY 2021, CNOOC-KJ 135 ZDXM 35 TJY 006 TJY 2019, and of China National Offshore Oil Corporation Energy Development Co., Ltd. (CNOOC-HFZXKT-JN2021-02-03).
Abstract
A bimetallic Pd/Cu catalyst supported on a metal-organic-framework-derived cobalt oxide was prepared and characterized by SEM, EDS, XRD, XPS, and ICP-OES analyses. The catalyst promoted the Sonogashira reaction of aryl iodides with terminal alkynes at a low loading of the palladium (0.032 mol%) and copper species (0.012 mol%) to give the corresponding disubstituted alkynes in moderate to good yields. When the catalyst was recovered by using an external magnetic field, its catalytic activity decreased slightly in a second cycle.
Key words
Sonogashira reaction - palladium catalysis - copper catalysis - bimetal catalysis - alkynes - heterogeneous catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751364.
- Supporting Information
Publication History
Received: 06 March 2022
Accepted after revision: 25 July 2022
Article published online:
31 August 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
- 2 Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
- 3 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
- 4 Varnado CD. Jr, Bielawski CW. In Polymer Science: A Comprehensive Reference, Chap. 5.08. Matyjaszewski K, Möller M. Elsevier Science; Amsterdam: 2012
- 5 Wang D, Gao S. Org. Chem. Front. 2014; 1: 556
- 6 Heravi MM, Ghanbarian M, Ghalavand N, Nazari N. Curr. Org. Chem. 2018; 22: 1420
- 7 Fine Chemicals Through Heterogeneous Catalysis . Sheldon RA, van Bekkum H. Wiley-VCH; Weinheim: 2001
- 8 Heterogenized Homogeneous Catalysts for Fine Chemical Production: Materials and Processes. Barbaro P, Liguori F. Springer; Dordrechet: 2010
- 9 Nasrollahzadeh M, Atarod M, Alizadeh M, Hatamifard A, Sajadi S. Curr. Org. Chem. 2017; 21: 708
- 10 Rai RK, Tyagi D, Gupta K, Singh SK. Catal. Sci. Technol. 2016; 6: 3341
- 11 Fan J, Du H, Zhao Y, Wang Q, Liu Y, Li D, Feng J. ACS Catal. 2020; 10: 13560
- 12 Gholinejad M, Khosravi F, Afrasi M, Sansano JM, Nájera C. Catal. Sci. Technol. 2021; 11: 2652
- 13 Sengupta D, Saha J, De G, Basu B. J. Mater. Chem. A 2014; 2: 3986
- 14 Evangelisti C, Balerna A, Psaro R, Fusini G, Carpita A, Benfatto M. ChemPhysChem 2017; 18: 1921
- 15 Wang G, Hao P, Chang Y, Zhang Q, Liu W, Duan B, Zhan H, Bi S. Nanoscale 2022; 14: 2256
- 16 Xu W, Sun H, Yu B, Zhang G, Zhang W, Gao Z. ACS Appl. Mater. Interfaces 2014; 6: 20261
- 17 Gholinejad M, Ahmadi J, Nájera C, Seyedhamzeh M, Zareh F, Kompany-Zareh M. ChemCatChem 2017; 9: 1442
- 18 Gholinejad M, Bahrami M, Nájera C, Pullithadathil B. J. Catal. 2018; 363: 81
- 19 Wang B, Wang Y, Li J, Guo X, Bai G, Tong X, Jin G, Guo X. Catal. Sci. Technol. 2018; 8: 3357
- 20 Wei Z, Xie Z, Gao L, Wang Y, Sun H, Jian Y, Zhang G, Xu L, Yang J, Zhang W, Gao Z. Catalysts 2020; 10: 192
- 21 Sultana S, Mech SD, Hussain FL, Pahari P, Borah G, Gogoi PK. RSC Adv. 2020; 10: 23108
- 22 Gholinejad M, Naghshbandi Z, Sansano JM. Mol. Catal. 2022; 518: 112093
- 23 Suzuka T, Okada Y, Ooshiro K, Uozumi Y. Tetrahedron 2010; 66: 1064
- 24 Ohtaka A, Teratani T, Fujii R, Ikeshita K, Kawashima T, Tatsumi K, Shimomura O, Nomura R. J. Org. Chem. 2011; 76: 4052
- 25 Nasrollahzadeh M, Maham M, Ehsani A, Khalaj M. RSC Adv. 2014; 4: 19731
- 26 Hajipour AR, Shirdashtzade Z, Azizi G. Appl. Organomet. Chem. 2014; 28: 696
- 27 Mandegani Z, Asadi M, Asadi Z. Appl. Organomet. Chem. 2016; 30: 657
- 28 Shafiei N, Nasrollahzadeh M, Baran T, Baran NY, Shokouhimehr M. Carbohydr. Polym. 2021; 262: 117920
- 29 Das R, Pachfule P, Banerjee R, Poddar P. Nanoscale 2012; 4: 591
- 30 Song Y, Li X, Sun L, Wang L. RSC Adv. 2015; 5: 7267
- 31 Oar-Arteta L, Wezendonk T, Sun X, Kapteijn F, Gascon J. Mater. Chem. Front. 2017; 1: 1709
- 32 Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Chem. Rev. 2020; 120: 8468
- 33 Huang H, Shen K, Chen F, Li Y. ACS Catal. 2020; 10: 6579
- 34 Duan C, Yu Y, Hu H. Green Energy Environ. 2022; 7: 3
- 35 Yang J, Zhang F, Lu H, Hong X, Jiang H, Wu Y, Li Y. Angew. Chem. 2015; 127: 11039
- 36 During the calcination process, Pd(NO3)2 might be transformed into PdO, which is reduced to metallic Pd(0) by the porous carbon present in the support; See: Sarkar C, Koley P, Shown I, Lee J, Liao Y.-F, An K, Tardio J, Nakka L, Chen K.-H, Mondal J. ACS Sustainable Chem. Eng. 2019; 7: 10349
- 37 Espinós JP, Morales J, Barranco A, Caballero A, Holgado JP, González-Elipe AR. J. Phys. Chem. B 2002; 106: 6921
- 38 Huang L, Peng F, Ohuchi FS. Surf. Sci. 2009; 603: 2825
- 39 Sonogashira Reaction of Aryl Iodides 1 with Terminal Alkynes 2: General Procedure A mixture of the appropriate aryl iodide 1 (0.5 mmol), terminal alkyne 2 (0.6 mmol), catalyst B (1.0 mg; 0.032 mol% Pd species, 0.012 mol% Cu species), and K3PO4 (1.0 mmol) in EtOH (2.0 mL) was stirred at 80 °C for 24 h under air. When the reaction was complete, the mixture was cooled to rt. The organic phases were concentrated in vacuo, and the resulting crude product was purified by column chromatography (silica gel, hexane–EtOAc). 1-Methyl-3-(phenylethynyl)benzene (3d) Isolated by column chromatography [silica gel, hexane–EtOAc (5:1)], as a yellow liquid; yield: 88%; Rf = 0.7 (hexane–EtOAc, 5:1). 1H NMR (400 MHz, CDCl3): δ = 7.50–7.48 (m, 2 H), 7.33–7.28 (m, 5 H), 7.20 (t, J = 7.6 Hz, 1 H), 7.10 (d, J = 7.6 Hz, 1 H), 2.31 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 137.98, 132.17, 131.57, 129.14, 128.66, 128.30, 128.22, 128.15, 123.36, 123.05, 89.54, 89.01, 21.12.