Subscribe to RSS
DOI: 10.1055/s-0042-1751415
Noncovalent Interactions in Crowded Benzene Systems: How Much Strain Is Too Much? Attractions Overcome Repulsions!
SPV acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) in the frame of the priority program SPP 1807 ‘Control of London Dispersion Interactions in Molecular Chemistry’ (Grant VE 265-9/2). This paper was supported by the Kazan Federal University Strategic Academic Leadership Program (‘PRIORITY-2030’). AAS acknowledges gratefully a research scholarship from the Deutscher Akademischer Austauschdienst (DAAD) and the Committee on Science and Higher Education of the Government of St. Petersburg. Interpretation of dispersion interactions and nonadditive effects (Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences) was financially supported by the Russian Science Foundation and the Government of the Novosibirsk Region (project No. 22-23-20182). Processing of data was supported by the Ministry of Science and Higher Education of the Russian Federation (N 121031700314-5).
Abstract
In molecular design, large alkyl groups are used to introduce bulk and steric crowding of the catalytic center to improve catalytic efficiency and selectivity. The bulky groups are highly polarizable, increasing their ability to participate in stabilizing noncovalent interactions. The rationalization of noncovalent interaction trends is of both fundamental and practical interest as it provides new design concepts for catalysis and synthesis. Highly congested molecules always present challenges to chemists. Crowded benzene systems are an important class of compounds with well-established thermodynamic properties. The latter were used in this work to develop tools to quantify the degree of stabilization or destabilization in benzene systems crowded with bulky isopropyl and tert-butyl substituents. The basic idea was to quantify the delicate balance between repulsive and attractive interactions inherent in crowded benzene systems. The ensemble of experimental thermodynamic data and DFT-D3 calculations enabled the development of quantitative scales of the dispersion contributions and their understanding at the molecular level.
Key words
noncovalent interaction - dispersion interaction - enthalpy of formation - enthalpy of vaporization - quantum-chemical calculations - group additivity - structure–property relationshipsPublication History
Received: 07 November 2022
Accepted after revision: 12 January 2023
Article published online:
10 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Shada AD. R, Miller AJ. M, Emge TJ, Goldman AS. ACS Catal. 2021; 11: 3009
- 2 Datta A, Pati SK. Chem. Phys. Lett. 2006; 433: 67
- 3 Verevkin SP, Kondratev SO, Zaitsau DH, Zherikova KV, Ludwig R. J. Mol. Liq. 2021; 343: 117547
- 4 Arnett EM, Sanda JC, Bollinger JM, Barber M. J. Am. Chem. Soc. 1967; 89: 5389
- 5 Krüerke U, Hoogzand C, Hübel W. Chem. Ber. 1961; 94: 2817
- 6 Hoogzand C, Hűbel W. Tetrahedron Lett. 1961; 2: 637
- 7 Schleyer P. v. R, Williams JE, Blanchard KR. J. Am. Chem. Soc. 1970; 92: 2377
- 8 Ducros M, Gruson JF, Sannier H. Thermochim. Acta 1980; 36: 39
- 9 Beckhaus H. Chem. Ber. 1983; 116: 86
- 10 Baeyer A. Ber. Dtsch. Chem. Ges. 1885; 18: 2269
- 11 Greenberg A, Liebman JF. Strained Organic Molecules, 1st ed. . Academic Press; London: 1978
- 12 Pedley JB, Naylor RD, Kirby SP. Thermochemical Data of Organic Compounds . Springer; Berlin, Heidelberg: 1986
- 13 Colomina M, Jiménez P, Roux M, Turrión C. J. Chem. Thermodyn. 1989; 21: 275
- 14 Verevkin SP. Thermochim. Acta 1998; 316: 131
- 15 Verevkin SP. J. Chem. Thermodyn. 1998; 30: 1029
- 16 Verevkin SP. J. Chem. Thermodyn. 2006; 38: 1111
- 17 Verevkin SP, Kozlova SA, Emel’yanenko VN, Goodrich P, Hardacre C. J. Phys. Chem. A 2008; 112: 11273
- 18 Steele WV, Chirico RD, Cowell AB, Knipmeyer SE, Nguyen A. J. Chem. Eng. Data 2002; 47: 725
- 19 Grimme S, Hansen A, Brandenburg JG, Bannwarth C. Chem. Rev. 2016; 116: 5105
- 20 Curtiss LA, Redfern PC, Raghavachari K. J. Chem. Phys. 2007; 126: 084108
- 21 Samarov AA, Verevkin SP. J. Chem. Thermodyn. 2022; 174: 106872
- 22 Gomberg M. J. Am. Chem. Soc. 1900; 22: 757
- 23 Grimme S, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 12639
- 24 Meitei OR, Heßelmann A. J. Comput. Chem. 2017; 38: 2500
- 25 Singha S, Buchsteiner M, Bistoni G, Goddard R, Fürstner A. J. Am. Chem. Soc. 2021; 143: 5666
- 26 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
- 27 Zaitsau DH, Ludwig R, Verevkin SP. Phys. Chem. Chem. Phys. 2021; 23: 7398
- 28 Emel’yanenko VN, Stange P, Feder-Kubis J, Verevkin SP, Ludwig R. Phys. Chem. Chem. Phys. 2020; 22: 4896
- 29 Rösel S, Balestrieri C, Schreiner PR. Chem. Sci. 2017; 8: 405
- 30 Verevkin SP, Emel’yanenko VN, Diky V, Muzny CD, Chirico RD, Frenkel M. J. Phys. Chem. Ref. Data 2013; 42: 033102
- 31 Stull DR. Ind. Eng. Chem. 1947; 39: 517
- 32 Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
- 33 Solel E, Ruth M, Schreiner PR. J. Am. Chem. Soc. 2021; 143: 20837