Synlett 2023; 34(19): 2319-2322 DOI: 10.1055/s-0042-1751490
Pd-Catalyzed Intramolecular Cyclization–Thiocarbonylation Cascade Using Thioesters
Ryunosuke Ito
,
Yoshifumi Okura
,
Masahisa Nakada∗
This work was financially supported in part by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP19H02725 and JP22H02087) and a Waseda University Grant for Special Research Projects.
Abstract
A Pd-catalyzed intramolecular cyclization–thiocarbonylation cascade using thioesters is described. The developed cascade reaction afforded chromane, coumaran, indoline, and oxindole derivatives with a chiral quaternary carbon atom at the benzylic position in high to excellent yields. Relative to those observed in the previously reported relevant cascade using TIPSSPh, the yields with thioesters are almost the same or higher, depending on the substrate. Moreover, the use of thioesters significantly reduces the reaction time to less than one hour. Therefore, AcSPh is advantageous over TIPSSPh in terms of reaction time, atom economy, and cost effectiveness.
Key words
cascade reactions -
cyclization -
palladium -
thiocarbonylation -
thioesters
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751490.
Supporting Information
Publication History
Received: 15 July 2023
Accepted after revision: 14 August 2023
Article published online: 18 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
For selected reviews, see:
1a
Holman KR,
Stanko AM,
Reisman SE.
Chem. Soc. Rev. 2021; 50: 7891
1b
Mondal S,
Ballav T,
Biswas K,
Ghosh S,
Ganesh V.
Eur. J. Org. Chem. 2021; 4566
1c
Ping Y,
Li Y,
Zhu J,
Kong W.
Angew. Chem. Int. Ed. 2019; 58: 1562
1d
Muzart J.
Tetrahedron 2013; 69: 6735
1e
Klein JE. M. N,
Taylor RJ. K.
Eur. J. Org. Chem. 2011; 6821
1f
Vlaar T,
Ruijter E,
Orru RV. A.
Adv. Synth. Catal. 2011; 353: 809
1g
Pinto A,
Jia Y,
Neuville L,
Zhu J.
Chem. Eur. J. 2007; 13: 961
1h
Poli G,
Giambastiani G,
Heumann A.
Tetrahedron 2000; 56: 5959
1i
Grigg R,
Sridharan V.
J. Organomet. Chem. 1999; 576: 65
2a
Zhang Y,
Negishi E.
J. Am. Chem. Soc. 1989; 111: 3454
2b
Copéret C,
Negishi EM.
Org. Lett. 1999; 1: 165
3a
Grigg R,
Redpath J,
Sridharan V,
Wilson D.
Tetrahedron Lett. 1994; 35: 4429
3b
Grigg R,
MacLachlan W,
Rasparini M.
Chem. Commun. 2000; 2241
3c
Anwar U,
Casaschi A,
Grigg R,
Sansano JM.
Tetrahedron 2001; 57: 1361
3d
Grigg R,
Martin W,
Morrisa J,
Sridharan V.
Tetrahedron 2005; 61: 11380
3e
Ishikura M,
Takahashi N,
Yamada K,
Yanada R.
Tetrahedron 2006; 62: 11580
3f
Hu H,
Teng F,
Liu J,
Hu W,
Luo S,
Zhu Q.
Angew. Chem. Int. Ed. 2019; 58: 9225
4
Matsuura T,
Overman LE,
Poon DJ.
J. Am. Chem. Soc. 1998; 120: 6500
5a
Evans P,
Grigg R,
Ramzan MI,
Sridharan V,
York M.
Tetrahedron Lett. 1999; 40: 3021
5b
Dondas HA,
Belveren S,
Poyraz S,
Grigg R,
Kilner C,
Ferrándiz-Saperas M,
Selva E,
Sansano JM.
Tetrahedron 2018; 74: 6
5c
Liu H,
Xiong Y,
Chen Z.
Asian J. Org. Chem. 2021; 10: 2351
6
Grigg R,
Major JP,
Martin FM,
Whittaker M.
Tetrahedron Lett. 1999; 40: 7709
7
Brown S,
Clarkson S,
Grigg R,
Thomas WA,
Sridharan V,
Wilson DM.
Tetrahedron 2001; 57: 1347
8a
Zhang D,
Xiong Y,
Guo Y,
Zhang L,
Wang Z,
Ding K.
Chem. Eur. J. 2022; 28: e202103670
8b
Chen M,
Wang X,
Yang P,
Kou X,
Ren Z.-H,
Guan Z.-H.
Angew. Chem. Int. Ed. 2020; 59: 12199
9a
Hosoya Y,
Mizoguchi K,
Yasukochi H,
Nakada M.
Synlett 2022; 33: 495
For related Pd-catalyzed cascade reactions, see:
9b
Hosoya Y,
Yasukochi H,
Mizoguchi K,
Nakada M.
Heterocycles 2022; 104: 655
9c
Hosoya Y,
Kobayashi I,
Mizoguchi K,
Nakada M.
Org. Lett. 2019; 21: 8280
10a
Lechuga-Eduardo H,
Zarza-Acuña E,
Romero-Ortega M.
Tetrahedron Lett. 2017; 58: 3234
For the use of TIPS thioethers for the formation of aryl aryl thioethers, see:
10b
Fernández-Rodríguez MA,
Shen Q,
Hartwig JF.
J. Am. Chem. Soc. 2006; 128: 2180
11
Park N,
Park K,
Jang M,
Lee S.
J. Org. Chem. 2011; 76: 4371
12
Gao Y,
Xiong W,
Chen H,
Wu W,
Peng J,
Gao Y,
Jiang H.
J. Org. Chem. 2015; 80: 7456
13
Viciu MS,
Germaneau RF,
Navarro-Fernandez O,
Stevens ED,
Nolan SP.
Organometallics 2002; 21: 5470
14
Synthesis of compound 2 : A 10 mL test tube was charged with 1 (24.6 mg, 0.0854 mmol, 1.0 equiv), AcSPh (0.0174 mL, 0.128 mmol, 1.5 equiv), Pd(PPh3 )4 (9.9 mg, 0.0086 mmol, 0.1 equiv), Cs2 CO3 (41.7 mg, 0.128 mmol, 1.5 equiv), and anhydrous toluene (1.7 mL, 0.05 mol/L). The reaction mixture was well degassed and then stirred at 100 °C under a CO atmosphere. After an hour, 1 M aq. HCl (1.7 mL) was added to the reaction mixture at room temperature and the aqueous layer was extracted with ethyl acetate (1.7 mL × 3). The combined organic layer was dried over Na2 SO4 , filtered, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/ethyl acetate, 200:1) to afford 2 (23.7 mg, 93%) as a colorless oil: R
f
= 0.56 (hexane/ethyl acetate, 4/1). 1 H NMR (400 MHz, CDCl3 ): δ = 7.39–7.45 (m, 3 H), 7.34–7.39 (m, 2 H), 7.25 (dd, J = 7.7, 1.6 Hz, 1 H), 7.09–7.15 (m, 1 H), 6.89–6.94 (m, 1 H), 6.82 (dd, J = 8.2, 1.1 Hz, 1 H), 4.15–4.30 (m, 2 H), 3.03 (d, J = 14.6 Hz, 1 H), 2.99 (d, J = 14.6 Hz, 1 H), 2.29–2.36 (m, 1 H), 1.89–1.97 (m, 1 H), 1.52 (s, 3 H). 13 C NMR (125 MHz, CDCl3 ): δ = 195.2, 153.8, 134.4, 129.5, 129.3, 129.2, 127.9, 127.8, 126.8, 120.6, 117.3, 62.7, 54.6, 34.2, 34.1, 28.4. HRMS (ESI): m /z [M + Na]+ calcd for C18 H18 NaO2 S: 321.0925; found: 321.0919.