Synlett 2024; 35(07): 735-740
DOI: 10.1055/s-0042-1751491
synpacts

Solvent Effect on Base-Free Synthesis 4-Substituted 2-Oxazolines via Intramolecular Cyclodemesylation

Erdin Dalkılıç
a   Food and Agriculture Vocational School, Çankırı Karatekin University, Çankırı, 18100, Turkey
b   Central Research Laboratory (ÇANKAM), Çankırı Karatekin University, Çankırı, 18100, Turkey
,
Yakup Güneş
c   Faculty of Education, Department of Basic Education, Siirt University, Siirt, 56100, Turkey
› Author Affiliations


Abstract

In this present study, the solvent effect was examined for the synthesis of 2-oxazolines via intramolecular cyclodemesylation. To determine the solvent effect, aprotic/protic polar and nonpolar solvents were screened and polar protic solvents met the best result. The remarkable feature of this synthesis is that cyclization takes place in the absence of any base or reagent, in high yields (89–96%). As a result, a series of 4-substituted chiral 2-oxazolines were successfully synthesized through a four-step process, with overall yields reaching between 79% and 88% in a greener approach.

Supporting Information



Publication History

Received: 28 July 2023

Accepted after revision: 25 August 2023

Article published online:
19 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Inahashi Y, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Matsumoto A, Hirose T, Sunazuka T, Yamada H, Otoguro K, Takahashi Y, O’mura S, Shiomi K. J. Antibiot. 2011; 64: 303
  • 2 Shaaban KA, Saunders MA, Zhang Y, Tran T, Elshahawi SI, Ponomareva LV, Wang X, Zhang J, Copley GC, Sunkara M, Kharel MK, Morris AJ, Hower JC, Tremblay MS, Prendergast MA, Thorson JS. J. Nat. Prod. 2017; 80: 2
  • 3 Kamińska K, Mular A, Olshvang E, Nolte NM, Kozłowski H, Wojaczyńska E, Gumienna-Kontecka E. RSC Adv. 2022; 12: 25284
  • 4 Tyler AR, Mosaei H, Morton S, Waddell PG, Wills C, McFarlane W, Gray J, Goodfellow M, Errington J, Allenby N, Zenkin N, Hall MJ. J. Nat. Prod. 2017; 80: 1558
  • 5 Nelson KM, Salomon CE, Aldrich CC. J. Nat. Prod. 2012; 75: 1037
  • 6 Crosignani S, Swinnen D. J. Comb. Chem. 2005; 7: 688
  • 7 Maftei CV, Fodor E, Jones PG, Daniliuc CG, Franz MH, Kelter G, Fiebig HH, Tamm M, Neda I. Rev. Roum. Chim. 2015; 60: 75
  • 8 Chen S, Zhang Y, Liu Y, Wang Q. J. Agric. Food. Chem. 2021; 69: 3601
  • 9 Chang W, Nie J, Yan Z, Wang Y, Farooq S. J. Agric. Food. Chem. 2019; 67: 6708
  • 10 Kline T, Andersen NH, Harwood EA, Bowman J, Malanda A, Endsley S, Erwin AL, Doyle M, Fong S, Harris AL, Mendelsohn B, Mdluli K, Raetz CR. H, Stover CK, Witte PR, Yabannavar A, Zhu S. J. Med. Chem. 2002; 45: 3112
  • 11 Pirrung MC, Tumey LN, McClerren AL, Raetz CR. H. J. Am. Chem. Soc. 2003; 125: 1575
  • 12 Ghosh AK, Mathivanan P, Cappiello J. Tetrahedron: Asymmetry 1998; 9: 1
  • 13 Connon R, Roche B, Rokade BV, Guiry P. J. Chem. Rev. 2021; 121: 6373
  • 14 Helmchen G, Pfaltz A. Acc. Chem. Res. 2000; 33: 336
  • 15 Meyers AI. J. Org. Chem. 2005; 70: 6137
  • 16 Shrestha B, Rose BT, Olen CL, Roth A, Kwong AC, Wang Y, Denmark SE. J. Org. Chem. 2021; 86: 3490
  • 17 Gant TG, Meyers AI. Tetrahedron 1994; 50: 2297
  • 18 Chen K, Li ZW, Shen PX, Zhao HW, Shi ZJ. Chem. Eur. J. 2015; 21: 7389
  • 19 Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R. Macromol. Rapid Commun. 2012; 33: 1613
  • 20 Sedlacek O, Lava K, Verbraeken B, Kasmi S, De Geest BG, Hoogenboom R. J. Am. Chem. Soc. 2019; 141: 9617
  • 21 Wu YC. M, Swager TM. J. Am. Chem. Soc. 2019; 141: 12498
  • 22 Sahn M, Weber C, Schubert US. Polym. Rev. 2019; 59: 240
  • 23 Li X, Taechalertpaisarn J, Xin D, Burgess K. Org. Lett. 2015; 17: 632
  • 24 Phillips AJ, Uto Y, Wipf P, Reno MJ, Williams DR. Org. Lett. 2000; 2: 1165
  • 25 Gilbert A, Bertrand X, Paquin JF. Org. Lett. 2018; 20: 7257
  • 26 Deng QH, Chen JR, Wei Q, Zhao QQ, Lu LQ, Xiao W. J. Chem. Commun. 2015; 51: 3537
  • 27 Meyers AI. J. Heterocycl. Chem. 1998; 35: 991
  • 28 Kamata K, Agata I, Meyers AI. J. Org. Chem. 1998; 63: 3113
  • 29 Deng H, Wang J, He W, Ye Y, Bai R, Zhang X, Ye X.-Y, Xie T, Hui Z. Org. Biomol. Chem. 2023; 21: 2312
  • 30 Pouambeka TW, Enoua GC, Obaya NN, Loumouamou BW, Makomo H, N’goka V. Mod. Chem. 2022; 10: 56
  • 31 Rajaram S, Sigman MS. Org. Lett. 2002; 4: 3399
  • 32 Crosignani S, Young AC, Linclau B. Tetrahedron Lett. 2004; 45: 9611
  • 33 Khapli S, Dey And S, Mal D. J. Indian Inst. Sci. 2001; 81: 461
  • 34 Wipf P, Miller CP. Tetrahedron Lett. 1992; 33: 907
  • 35 Movahed FS, Foo SW, Mori S, Ogawa S, Saito S. J. Org. Chem. 2022; 87: 243
  • 36 Gao WC, Hu F, Huo YM, Chang HH, Li X, Wei WL. Org. Lett. 2015; 17: 3914
  • 37 Liu GQ, Yang CH, Li YM. J. Org. Chem. 2015; 80: 11339
  • 38 Chavan SS, Rupanawar BD, Kamble RB, Shelke AM, Suryavanshi G. Org. Chem. Front. 2018; 5: 544
  • 39 Yang T, Huang C, Jia J, Wu F, Ni F. Molecules 2022; 27: 9042
  • 40 Inagaki T, Phong LT, Furuta A, Ito JI, Nishiyama H. Chem. Eur. J. 2010; 16: 3090
  • 41 Treat A, Henri V, Liu J, Shen J, Gil-Silva M, Morales A, Rade A, Tidgewell KJ, Kolber B, Shen Y. ACS Omega 2022; 7: 2929
  • 42 Dagorne S, Bellemin-Laponnaz S, Welter R. Organometallics 2004; 23: 3053
  • 43 Zhou Y, Wang L, Yuan G, Liu S, Sun X, Yuan C, Yang Y, Bian Q, Wang M, Zhong J. Org Lett. 2020; 22: 4532
  • 44 Harada S, Kobayashi M, Kono M, Nemoto T. ACS Catal. 2020; 10: 13296
  • 45 Clayden J, Clayton J, Harvey RA, Karlubíková O. Synlett 2009; 2836
  • 46 Hall JD, Duncan-Gould NW, Siddiqi NA, Kelly JN, Hoeferlin LA, Morrison SJ, Wyatt JK. Bioorg. Med. Chem. 2005; 13: 1409
  • 47 Thanigaimalai P, Konno S, Yamamoto T, Koiwai Y, Taguchi A, Takayama K, Yakushiji F, Akaji K, Chen SE, Naser-Tavakolian A, Schön A, Freire E, Hayashi Y. Eur. J. Med. Chem. 2013; 68: 372
  • 48 Surivet JP, Zumbrunn C, Rueedi G, Hubschwerlen C, Bur D, Bruyère T, Locher H, Ritz D, Keck W, Seiler P, Kohl C, Gauvin JC, Mirre A, Kaegi V, Dos Santos M, Gaertner M, Delers J, Enderlin-Paput M, Boehme M. J. Med. Chem. 2013; 56: 7396
  • 49 Or YS, Ying L, Wang C, Long J, Qiu Y.-L. WO2009/003009A1, 2009
  • 50 Zhou J, Tang Y. Chem. Soc. Rev. 2005; 34: 664
  • 51 Krout MR, Mohr JT, Stoltz BM. Org. Synth. 2009; 86: 181
  • 52 Wang Y, Hämäläinen A, Tois J, Franzén R. Tetrahedron: Asymmetry 2010; 21: 2376
  • 53 Yang D, Zhu Y, Yang N, Jiang Q, Liu R. Adv. Synth. Catal. 2016; 358: 1731
  • 54 Hossain SU, Sengupta S, Bhattacharya S. Bioorg. Med. Chem. 2005; 13: 5750
  • 55 Sk UH, Prakasha Gowda AS, Crampsie MA, Yun JK, Spratt TE, Amin S, Sharma AK. Eur. J. Med. Chem. 2011; 46: 3331
  • 56 (–)-(S)-2-(Furan-2-yl)-4-isobutyl-4,5-dihydrooxazole (1f) – General Procedure A solution of 1c (211 mg, 0.73 mmol, 1.0 equiv) in EtOH (10 mL) was stirred for 2 h at 45 °C. After stirring for 2 h, to the mixture was added NEt3 (148 mg, 1.47 mmol, 0.20 mL 2.0 equiv) and stirred for 5 min. Then, the mixture was concentrated and EtOAc (15 mL) was added. The organic layers were washed with water (15 mL) and brine (15 mL). The organic layer was dried over Na2SO4, filtered, and concentrated in vacuo to give the crude product. The residues were purified by column chromatography (PE/EtOAc = 8:2) to give a colorless liquid; yield 135 mg (96%). [α]D 20 –70 (c 1.00, CHCl3). 1H NMR (600 MHz, CDCl3): δ = 7.51 (dd, J = 1.9, 0.8 Hz, 1 H), 6.92 (dd, J = 3.5, 0.8 Hz, 1 H), 6.46 (dd, J = 3.5, 1.9 Hz, 1 H), 4.47 (dd, J = 9.3, 8.0 Hz, 1 H), 4.31 (dq, J = 9.3, 7.3 Hz, 1 H), 3.93 (t, J = 8.0 Hz, 1 H), 1.84 (dt, J = 13.6, 6.8 Hz, 1 H), 1.70 (dt, J = 13.6, 6.8 Hz, 1 H), 1.35 (dt, J = 13.6, 7.3 Hz, 1 H), 0.96 (d, J = 6.7 Hz, 3 H), 0.94 (d, J = 6.7 Hz, 3 H). 13C NMR (151 MHz, CDCl3): δ = 155.85, 145.24, 143.23, 114.27, 111.60, 73.38, 65.21, 45.57, 25.53, 22.94, 22.79. HRMS: m/z calcd for C11H16NO2: 194.1181 [M + H]+; found: 194.1185.
  • 57 Brunner H, Haßler B. Z. Naturforsch., B: J. Chem. Sci. 1998; 53: 476
  • 58 Allen JV, Dawson GJ, Frost CG, Williams JM. J, Coote SJ. Tetrahedron 1994; 50: 799
  • 59 Lu P, Ji CL, Lu Z. Asian J. Org. Chem. 2018; 7: 542