Synlett 2024; 35(12): 1405-1410
DOI: 10.1055/s-0042-1751516
letter

Iridium-Catalyzed Ligand-Controlled Semi-Reduction of Alkynes Employing H2O as the Hydrogen Donor and Its Application

Wei Zhao
a   Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong 226006, P. R. of China
,
Siyi Zhou
a   Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong 226006, P. R. of China
,
Chengniu Wang
b   Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, P. R. of China
,
Yi Zhang
a   Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong 226006, P. R. of China
,
Dawei Xu
c   Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong 226006, P. R. of China
› Author Affiliations
This work was supported in part by grants from the “333 Project” Scientific Research Project of Jiangsu Province (No. BRA2020204), Research Project of Nantong Health and Health Commission (No. MS2023041), TCM Science and Technology Development Plan of Jiangsu Province (No. MS2021060), Top Six Types of Talents’ Financial Assistance of Jiangsu Province (No. 2019-WSW-199), and Nantong University Clinical Medicine Special Project (Nos. 2022JY003, 2022LY009, 2022HY003).


Abstract

An iridium-catalyzed ligand-controlled semi-reduction of alkynes employing H2O as the hydrogen donor, together with its application, is reported. The use of di-tert-butylphosphinous chloride is crucial for stereoselectivity toward Z-olefins, whereas the use of 2-(diphenylphosphino)benzaldehyde is crucial for stereoselectivity toward E-olefins. More than 35 alkenes were obtained in good yields and high stereoselectivities. The utility of the current method in practical applications was investigated by studying the drug effects of (E)-1,3-dimethoxy-5-styrylbenzene on nerve growth in a zebrafish model.

Supporting Information



Publication History

Received: 01 August 2023

Accepted after revision: 25 September 2023

Article published online:
02 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Ling L, Hu C, Long L, Zhang X, Zhao L, Liu L, Chen H, Luo M, Zeng X. Nat. Commun. 2023; 14: 990
    • 1b Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA. J. Med. Chem. 2006; 49: 3033
    • 1c Baur JA, Sinclair DA. Nat. Rev. Drug Discovery 2006; 5: 493
    • 1d Corma A, Iborra S, Velty A. Chem. Rev. 2007; 107: 2411
    • 1e Fouche M, Roone L, Barrett AG. M. J. Org. Chem. 2012; 77: 3060
    • 1f Radkowski K, Sundararaju B, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 355
    • 1g Srimani D. 2013; 52: 14131
    • 1h Grau BW, Neuhauser A, Aghazada S, Meyer K, Tsogoeva SB. Chem. Eur. J. 2022; 28: e202201414
    • 2a Nguyen TT, Koh MJ, Mann TJ, Schrock RR, Hoveyda AH. Nature 2017; 552: 347
    • 2b Li J, Hua R, Liu T. J. Org. Chem. 2010; 75: 2966
    • 2c Ge L, Sinnema EG, Pérez JM, Postolache R, Reis MC, Harutyunyan SR. Sci. Adv. 2023; 9: eadf8742
    • 2d Shu P, Xu H, Zhang L, Li J, Liu H, Luo Y, Yang X, Ju Z, Xu Z. SynOpen 2019; 3: 103
    • 2e Siau WY, Zhang Y, Zhao Y. Top. Curr. Chem. 2012; 327: 33
    • 3a Marvell EN, Li T. Synthesis 1973; 457
    • 3b Brunet JJ, Gallois P, Caubere P. J. Org. Chem. 1980; 45: 1937
    • 3c Choudary BM, Sharma GV. M, Bharathi P. Angew. Chem. Int. Ed. 1989; 28: 465
    • 3d Choi J, Yoon NM. Tetrahedron Lett. 1996; 37: 1057
    • 3e Alonso F, Osante I, Yus M. Tetrahedron 2007; 63: 93
    • 3f Hauwert P, Maestri G, Sprengers JW, Catellani M, Elsevier CJ. Angew. Chem. Int. Ed. 2008; 47: 3223
    • 3g Haberberger M, Irran E, Enthaler S. Eur. J. Inorg. Chem. 2011; 2797
    • 3h Qi X, Liu X, Qu L, Liu Q, Lan Y. J. Catal. 2018; 362: 25
    • 3i Brzozowska A, Azofra LM, Zubar V, Atodiresei I, Cavallo L, Rueping M, El-Sepelgy O. ACS Catal. 2018; 8: 4103
    • 3j Zhan K, Li Y. Catalysts 2017; 7: 337
    • 3k Singh K, Staig SJ, Weaver J. J. Am. Chem. Soc. 2014; 136: 5275
    • 3l Lee MT, Goodstein MB, Lalic G. J. Am. Chem. Soc. 2019; 141: 17086
    • 3m Mai J, Arkhypchuk AI, Wagner S, Orthaber A, Ott S. Eur. J. Org. Chem. 2022; e202200365
    • 3n Cai W, Fan H, Ding D, Zhang Y, Wang W. Chem. Commun. 2017; 53: 12918
  • 4 Wang C, Dong J, Li T, Zhao X, Xu D. Synthesis 2022; 54: 2687
    • 6a Tokmic K, Fout AR. J. Am. Chem. Soc. 2016; 138: 13700
    • 6b Garbe M, Budweg S, Papa V, Wei ZH, Hornke H, Bachmann S, Scalone M, Spannenberg A, Jiao H, Junge K, Beller M. Catal. Sci. Technol. 2020; 10: 3994
    • 6c Liu X, Liu B, Liu Q. Angew. Chem. Int. Ed. 2020; 59: 6750
    • 6d Liu J, Wei Z, Yang J, Ge Y, Wei D, Jackstell R, Jiao H, Beller M. ACS Catal. 2020; 10: 12167
    • 6e Brown HC, Zweifel G. J. Am. Chem. Soc. 1959; 81: 1512
    • 6f Yatagai H, Yamamoto Y, Maruyama K, Sonoda A, Murahashi SI. J. Chem. Soc., Chem. Commun. 1977; 852
    • 6g Yatagai H, Yamamoto Y, Maruyama K. J. Chem. Soc., Chem. Commun. 1978; 702
    • 6h Rej S, Madasu M, Tan C.-S, Hsia C.-F, Huang M.-H. Chem. Sci. 2018; 9: 2517
    • 6i Wagh YS, Asao N. J. Org. Chem. 2015; 80: 847
    • 6j Shibahara F, Mizuno T, Shibata Y, Murai T. Bull. Chem. Soc. Jpn. 2020; 93: 332
    • 6k Fan C, Hou J, Chen Y.-J, Ding K.-L, Zhou Q.-L. Org. Lett. 2021; 23: 2074
    • 6l Wang Y, Huang Z, Huang Z. Nat. Catal. 2019; 2: 529
    • 6m Huang Z, Wang Y, Leng X, Huang Z. J. Am. Chem. Soc. 2021; 143: 4824
    • 7a Fuchs M, Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 3978
    • 7b Leutzsch M, Wolf LM, Gupta P, Fuchs M, Thiel W, Farès C, Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 12431
    • 7c Sklyaruk J, Zubar V, Borghs JC, Rueping M. Org. Lett. 2020; 22: 6067
    • 8a Campaña AG, Estévez RE, Fuentes N, Robles R, Cuerva MJ, Buñuel E, Cárdenas D, Oltra JE. Org. Lett. 2007; 9: 2195
    • 8b Li J, Hua R. Chem. Eur. J. 2011; 17: 8462
    • 8c Schabel T, Belger C, Plietker B. Org. Lett. 2013; 15: 2858
    • 8d Zhong J.-J, Liu Q, Wu C.-J, Meng Q.-Y, Gao X.-W, Li Z.-J, Chen B, Tung C.-H, Wu L.-Z. Chem. Commun. 2016; 52: 1800
    • 8e Rao S, Prabhu KR. Chem. Eur. J. 2018; 24: 13954
    • 8f Han X, Hu J, Chen C, Yuan Y, Shi Z. Chem. Commun. 2019; 55: 6922
    • 8g Zhao C.-Q, Chen Y.-G, Qiu H, Wei L, Fang P, Mei T.-S. Org. Lett. 2019; 21: 1412
    • 8h Hu X, Wang G, Qin C, Xie X, Zhang C, Xu W, Liu Y. Org. Chem. Front. 2019; 6: 2619
    • 8i Li K, Khan R, Zhang X, Gao Y, Zhou Y, Tan H, Chen J, Fan B. Chem. Commun. 2019; 55: 5663
    • 8j Shi J, Ye T, Dong J, Liu A, Xu T, Tai M, Zhang L, Wang C. ACS Omega 2023; 8: 11492
  • 9 Song KK, Huang H, Han P, Zhang CL, Shi Y, Chen QX. Biochem. Biophys. Res. Commun. 2006; 342: 1147
  • 10 Shi J, Li T, Dong J, Wu Y, Wang W, Wang C. Nat. Prod. Commun. 2022; DOI: 10.1177/1934578X221113707.
  • 11 Srinivas K, Dangat Y, Kommagalla Y, Vanka K, Ramana CV. Chem. Eur. J. 2017; 23: 7570
  • 12 (Z)-Alkenes 2; General Procedure A 15 mL pressure tube was charged with the appropriate alkyne 1 (0.1 mmol) and [Ir(cod)Cl]2 (2.5 μmol, 1.68 mg) under a N2 atmosphere. t-Bu2PCl (0.02 mmol, 3.8 μL), H2O (10 mmol, 180 μL), and THF (1.5 mL) were added, and the resultant mixture was heated at 120 °C with stirring for ~24 h under N2. The solution was then cooled to r.t. and diluted with EtOAc (5 mL). The organic phases were washed with brine, and the aqueous phase was extracted with EtOAc. The organic phases were dried, filtered, and concentrated to give a crude product that was purified by column chromatography [silica gel, hexane or hex–EtOAc (100:1 to 40:1)]. (Z)-1,2-Diphenylethene (2a)13 Colorless liquid; yield: 16.2 mg (90%). 1H NMR (400 MHz, CDCl3): δ = 7.26–7.17 (m, 10 H), 6.60 (d, J = 1.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 137.4, 130.4, 129.0, 128.3, 127.2. (E)-Alkenes 3; General Procedure A 15 mL pressure tube was charged with the appropriate alkyne 1 (0.1 mmol) and [Ir(cod)Cl]2 (2.5 μmol, 1.68 mg) under a N2 atmosphere. DPPBde (0.02 mmol, 5.8 mg), H2O (10 mmol, 180 μL), and THF (1.5 mL) were added, and the resultant mixture was heated at 120 °C with stirring for ~28 h under N2; the slightly longer reaction time might be beneficial for the isomerization. The solution was then cooled to r.t. and diluted with EtOAc (5 mL). The organic phases were washed with brine, and the aqueous phase was extracted with EtOAc. The organic phases were dried, filtered, and concentrated to give a crude product that was purified by column chromatography [silica gel, hexane or hex–EtOAc (100:1 to 40:1)]. (E)-1,2-Diphenylethene (3a)13 White solid; yield: 15.6 mg (87%). 1H NMR (400 MHz, CDCl3): δ = 7.52 (d, J = 7.3 Hz, 4 H), 7.36 (t, J = 7.6 Hz, 4 H), 7.26 (dd, J = 10.0, 4.6 Hz, 2 H), 7.11 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 137.5, 128.8, 127.8, 126.6.
  • 13 Fu S, Chen N.-Y, Liu X, Shao Z, Luo S.-P, Liu Q. J. Am. Chem. Soc. 2016; 138: 8588