Subscribe to RSS
DOI: 10.1055/s-0042-1751541
Acetal Substitution Reactions: Stereoelectronic Effects, Conformational Analysis, Reactivity vs Selectivity, and Neighboring-Group Participation
The work on this manuscript was supported by the National Institutes of Health (NIH), National Institute of General Medical Sciences (1R35GM148203).
This article is dedicated to Professor Robert Bergman (University of California, Berkeley), a brilliant and creative scientist and scholar, and an outstanding mentor and teacher.
Abstract
Acetal substitution reactions can proceed by a number of mechanisms, but oxocarbenium ion intermediates are involved in many of these reactions. Our research has focused on understanding the conformational preferences, structures, and reactions of these intermediates. This account summarizes our observations that electrostatic effects play a significant role in defining the preferred conformations, and that torsional effects determine how those intermediates react. Neighboring-group effects are not as straightforward as they might seem, considering that oxocarbenium ion intermediates are in equilibrium with structures that involve stabilization by a nearby substituent.
1 Introduction
2 Unexpected Stereoselectivities
3 Determining Conformational Preferences of Oxocarbenium Ions
4 Structures of Carbocations by NMR Spectroscopy and X-ray Crystallography
5 Stereoelectronic Models for Reactions Involving Other Oxocarbenium Ions
6 Stereoselectivity and Reactivity: When They Correlate, When They Do Not
7 Neighboring–Group Participation Is Not as Simple as It Seems
8 What Is True for Carbocations Is True for Carbonyl Compounds
9 Stereoelectronic and Torsional Effects in Reactions of Enolates
10 Summary of Expected Selectivities for Reactions of Cyclic Acetals
11 Conclusion
Key words
acetals - oxocarbenium ion - stereochemical model - neighboring-group effects - addition to carbonyl compounds - enolatesPublication History
Received: 30 September 2023
Accepted after revision: 20 November 2023
Article published online:
16 January 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Hess SN, Mo X, Wirtz C, Fürstner A. J. Am. Chem. Soc. 2021; 143: 2464
- 2 Thach DQ, Brill ZG, Grover HK, Esguerra KV, Thompson JK, Maimone TJ. Angew. Chem. Int. Ed. 2020; 59: 1532
- 3 Soda Y, Sugiyama Y, Yoritate M, Tajima H, Shibuya K, Ogihara C, Oishi T, Sato T, Chida N. Org. Lett. 2020; 22: 7502
- 4 Wu P, Nielsen TE. Chem. Rev. 2017; 117: 7811
- 5 Gharpure SJ, Vishwakarma DS, Patel RK. Chem. Commun. 2019; 55: 6858
- 6 Kőnig B, Sztanó G, Holczbauer T, Soós T. J. Org. Chem. 2023; 88: 6182
- 7 Ling J, Bennett CS. Asian J. Org. Chem. 2019; 8: 802
- 8 Moon S, Chatterjee S, Seeberger PH, Gilmore K. Chem. Sci. 2020; 12: 2931
- 9 Sammakia T, Smith RS. J. Am. Chem. Soc. 1994; 116: 7915
- 10 Sammakia T, Smith RS. J. Am. Chem. Soc. 1992; 114: 10998
- 11 Franconetti A, Ardá A, Asensio JL, Blériot Y, Thibaudeau S, Jiménez-Barbero J. Acc. Chem. Res. 2021; 54: 2552
- 12 Naredla RR, Klumpp DA. Chem. Rev. 2013; 113: 6905
- 13 Huang M, Garrett GE, Birlirakis N, Bohé L, Pratt DA, Crich D. Nat. Chem. 2012; 4: 663
- 14 Adero PO, Amarasekara H, Wen P, Bohé L, Crich D. Chem. Rev. 2018; 118: 8242
- 15 Andreana PR, Crich D. ACS Cent. Sci. 2021; 7: 1454
- 16 Horenstein NA. Mechanisms for Nucleophilic Aliphatic Substitution at Glycosides. In Advances in Physical Organic Chemistry, Vol. 41. Richard JP. Academic Press; London: 2006: 275
- 17 Shaw JT, Woerpel KA. Tetrahedron 1997; 53: 16597
- 18 Shaw JT, Woerpel KA. J. Org. Chem. 1997; 62: 6706
- 19 Bear TJ, Shaw JT, Woerpel KA. J. Org. Chem. 2002; 67: 2056
- 20 Shaw JT, Woerpel KA. Tetrahedron 1999; 55: 8747
- 21 Calad SA, Ćiraković J, Woerpel KA. J. Org. Chem. 2007; 72: 1027
- 22 Schmitt A, Reissig H.-U. Synlett 1990; 40
- 23 Schmitt A, Reissig H.-U. Chem. Ber. 1995; 128: 871
- 24 Stevens RV, Lee AW. M. J. Am. Chem. Soc. 1979; 101: 7032
- 25 Stevens RV. Acc. Chem. Res. 1984; 17: 289
- 26 Deslongchamps P. Stereoelectronic Effects in Organic Chemistry . Pergamon Press; New York: 1983: 209
- 27 Woods RJ, Andrews CW, Bowen JP. J. Am. Chem. Soc. 1992; 114: 859
- 28 Woods RJ, Andrews CW, Bowen JP. J. Am. Chem. Soc. 1992; 114: 850
- 29 Miljković M, Yeagley D, Deslongchamps P, Dory YL. J. Org. Chem. 1997; 62: 7597
- 30 Hagen G, Mayr H. J. Am. Chem. Soc. 1991; 113: 4954
- 31 Walvoort MT, Dinkelaar J, van den Bos LJ, Lodder G, Overkleeft HS, Codée JD. C, van der Marel GA. Carbohydr. Res. 2010; 345: 1252
- 32 Seeman JI. Chem. Rev. 1983; 83: 83
- 33 Crich D, Sharma I. Org. Lett. 2008; 10: 4731
- 34 Nukada T, Bérces A, Wang L, Zgierski MZ, Whitfield DM. Carbohydr. Res. 2005; 340: 841
- 35 Shenoy S, Woerpel KA. Org. Lett. 2005; 7: 1157
- 36 Krumper JR, Salamant WA, Woerpel KA. J. Org. Chem. 2009; 74: 8039
- 37 Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2000; 122: 168
- 38 Ayala L, Lucero CG, Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 15521
- 39 Yang MT, Woerpel KA. J. Org. Chem. 2009; 72: 545
- 40 Niederer KA, Fodor MD, Catino AJ. J. Chem. Educ. 2018; 95: 1230
- 41 Lucero CG, Woerpel KA. J. Org. Chem. 2006; 71: 2641
- 42 Ohno K, Yoshida H, Watanabe H, Fujita T, Matsuura H. J. Phys. Chem. 1994; 98: 6924
- 43 Elferink H, Severijnen ME, Martens J, Mensink RA, Berden G, Oomens J, Rutjes FP. J. T, Rijs AM, Boltje TJ. J. Am. Chem. Soc. 2018; 140: 6034
- 44 Hansen T, Elferink H, van Hengst JM. A, Houthuijs KJ, Remmerswaal WA, Kromm A, Berden G, van der Vorm S, Rijs AM, Overkleeft HS, Filippov DV, Rutjes FP. J. T, van der Marel GA, Martens J, Oomens J, Codée JD. C, Boltje TJ. Nat. Commun. 2020; 11: 2664
- 45 Childs RF, Kostyk MD, Lock CJ. L, Mahendran M. Can. J. Chem. 1991; 69: 2024
- 46 Childs RF, Kang GJ, Wark TA, Frampton CS. Can. J. Chem. 1984; 72: 2084
- 47 Chamberland S, Ziller JW, Woerpel KA. J. Am. Chem. Soc. 2005; 127: 5322
- 48 Gunbas G, Hafezi N, Sheppard WL, Olmstead MM, Stoyanova IV, Tham FS, Meyer MP, Mascal M. Nat. Chem. 2012; 4: 1018
- 49 Dibble DJ, Ziller JW, Woerpel KA. J. Org. Chem. 2011; 76: 7706
- 50 Choi H, Choi J, Han J, Lee K. J. Org. Chem. 2022; 87: 4316
- 51 Senapati S, Unmesh NA, Shet MN, Ahmad I, Ajikumar N, Ramana CV. Synthesis 2021; 53: 2903
- 52 Ghosh AK, Lee DS. J. Org. Chem. 2019; 84: 6191
- 53 Larsen CH, Ridgway BH, Shaw JT, Woerpel KA. J. Am. Chem. Soc. 1999; 121: 12208
- 54 Smith DM, Tran MB, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 14149
- 55 Smith DM, Woerpel KA. Org. Lett. 2004; 6: 2063
- 56 Lavinda O, Tran VT, Woerpel KA. Org. Biomol. Chem. 2014; 12: 7083
- 57 Schmitt A, Reissig H.-U. Eur. J. Org. Chem. 2000; 3893
- 58 Schmitt A, Reissig H.-U. Eur. J. Org. Chem. 2001; 1169
- 59 Bur SK, Martin SF. Org. Lett. 2000; 2: 3445
- 60 van Rijssel ER, Goumans TP. M, Lodder G, Overkleeft HS, van der Marel GA, Codée JD. C. Org. Lett. 2013; 15: 3026
- 61 Platt JR. Science 1964; 146: 347
- 62 Tran VT, Woerpel KA. J. Org. Chem. 2013; 78: 6609
- 63 Jana SK, Harikrishna S, Sudhakar S, El-Khoury R, Pradeepkumar PI, Damha MJ. J. Org. Chem. 2022; 87: 2367
- 64 Ouvry G. Bioorg. Med. Chem. 2022; 57: 116650
- 65 Kurup HM, Kvach MV, Harjes S, Jameson GB, Harjes E, Filichev VV. Org. Biomol. Chem. 2023; 21: 5117
- 66 Entrena A, Campos JM, Gallo MA, Espinosa A. ARKIVOC 2005; (vi): 88
- 67 Beaver MG, Buscagan TM, Lavinda O, Woerpel KA. Angew. Chem. Int. Ed. 2016; 55: 1816
- 68 Kendale JC, Valentín EM, Woerpel KA. Org. Lett. 2014; 16: 3684
- 69 Luu KB, Woerpel KA. Org. Lett. 2023; 25: 152
- 70 Chamberland S, Woerpel KA. Org. Lett. 2004; 6: 4739
- 71 Still WC, Galynker I. Tetrahedron 1981; 37: 3981
- 72 Smith DM, Woerpel KA. Org. Biomol. Chem. 2006; 4: 1195
- 73 Baghdasarian GA, Woerpel KA. J. Org. Chem. 2006; 71: 6851
- 74 Billings SB, Woerpel KA. J. Org. Chem. 2006; 71: 5171
- 75 Shenoy SR, Smith DM, Woerpel KA. J. Am. Chem. Soc. 2006; 128: 8671
- 76 Mayr H, Patz M. Angew. Chem., Int. Ed. Engl. 1994; 33: 938
- 77 Mayr H, Kempf B, Ofial AR. Acc. Chem. Res. 2003; 36: 66
- 78 Tishkov AA, Schmidhammer U, Roth S, Riedle E, Mayr H. Angew. Chem. Int. Ed. 2005; 44: 4623
- 79 Loos R, Kobayashi S, Mayr H. J. Am. Chem. Soc. 2003; 125: 14126
- 80 Tishkov AA, Mayr H. Angew. Chem. Int. Ed. 2005; 44: 142
- 81 Krumper JR, Salamant WA, Woerpel KA. Org. Lett. 2008; 10: 4907
- 82 Issa JP, Bennett CS. J. Am. Chem. Soc. 2014; 136: 5740
- 83 Crich D, Sun S. J. Am. Chem. Soc. 1997; 119: 11217
- 84 Santana AG, Montalvillo-Jiménez L, Díaz-Casado L, Corzana F, Merino P, Cañada FJ, Jiménez-Osés G, Jiménez-Barbero J, Gómez AM, Asensio JL. J. Am. Chem. Soc. 2020; 142: 12501
- 85 Sletten ET, Tu Y.-J, Schlegel HB, Nguyen HM. ACS Catal. 2019; 9: 2110
- 86 Guo J, Ye X.-S. Molecules 2010; 15: 7235
- 87 Beaver MG, Woerpel KA. J. Org. Chem. 2010; 75: 1107
- 88 Hagen B, Ali S, Overkleeft HS, van der Marel GA, Codée JD. C. J. Org. Chem. 2017; 82: 848
- 89 van der Vorm S, Hansen T, Overkleeft HS, van der Marel GA, Codée JD. C. Chem. Sci. 2017; 8: 1867
- 90 van der Vorm S, van Hengst JM. A, Bakker M, Overkleeft HS, van der Marel GA, Codée JD. C. Angew. Chem. Int. Ed. 2018; 57: 8240
- 91 Hansen T, Lebedel L, Remmerswaal WA, van der Vorm S, Wander DP. A, Somers M, Overkleeft HS, Filippov DV, Désiré J, Mingot A, Blériot Y, van der Marel GA, Thibaudeau S, Codée JD. C. ACS Cent. Sci. 2019; 5: 781
- 92 van der Vorm S, Hansen T, van Hengst JM. A, Overkleeft HS, van der Marel GA, Codée JD. C. Chem. Soc. Rev. 2019; 48: 4688
- 93 Hansen T, Ofman TP, Vlaming JG. C, Gagarinov IA, van Beek J, Gote TA, Tichem JM, Ruijgrok G, Overkleeft HS, Filippov DV, van der Marel GA, Codée JD. C. Angew. Chem. Int. Ed. 2021; 60: 937
- 94 Chang C.-W, Lin M.-H, Wu C.-H, Chiang T.-Y, Wang C.-C. J. Org. Chem. 2020; 85: 15945
- 95 Cerón-Carrasco JP, Jacquemin D, Laurence C, Planchat A, Reichardt C, Sraïdi K. J. Phys. Org. Chem. 2014; 27: 512
- 96 Lide DR. Handbook of Organic Solvents, 1st ed. CRC Press; Boca Raton: 1994
- 97 Braccini I, Derouet C, Esnault J, du Penhoat CH, Mallet J.-M, Michon V, Sinaÿ P. Carbohydr. Res. 1993; 246: 23
- 98 Satoh H, Hansen HS, Manabe S, van Gunsteren WF, Hünenberger PH. J. Chem. Theory Comput. 2010; 6: 1783
- 99 Nogueira JM, Bylsma M, Bright DK, Bennett CS. Angew. Chem. Int. Ed. 2016; 55: 10088
- 100 Hettikankanamalage AA, Lassfolk R, Ekholm FS, Leino R, Crich D. Chem. Rev. 2020; 120: 7104
- 101 Beaver MG, Billings SB, Woerpel KA. J. Am. Chem. Soc. 2008; 130: 2082
- 102 Halpern J. Science 1982; 217: 401
- 103 Beaver MG, Billings SB, Woerpel KA. Eur. J. Org. Chem. 2008; 771
- 104 Demkiw KM, Remmerswaal WA, Hansen T, van der Marel GA, Codée JD. C, Woerpel KA. Angew. Chem. Int. Ed. 2022; 61: e202209401
- 105 Chun Y, Remmerswaal WA, Codée JD. C, Woerpel KA. Chem. Eur. J. 2023; e202301894
- 106 Trinderup HH, Juul-Madsen L, Press L, Madsen M, Jensen HH. J. Org. Chem. 2022; 87: 13763
- 107 Shivatare SS, Wong C.-H. J. Org. Chem. 2020; 85: 15780
- 108 Guberman M, Seeberger PH. J. Am. Chem. Soc. 2019; 141: 5581
- 109 Rychnovsky SD, Bartlett PA. J. Am. Chem. Soc. 1981; 103: 3963
- 110 Liautard V, Pillard C, Desvergnes V, Martin OR. Carbohydr. Res. 2008; 343: 2111
- 111 Mukherjee S, Tripathi RP, Mandal SB. Org. Lett. 2012; 14: 4186
- 112 Karak M, Joh Y, Suenaga M, Oishi T, Torikai K. Org. Lett. 2019; 21: 1221
- 113 Garcia A, Otte DA. L, Salamant WA, Sanzone JR, Woerpel KA. J. Org. Chem. 2015; 80: 4470
- 114 Garcia A, Otte DA. L, Salamant WA, Sanzone JR, Woerpel KA. Angew. Chem. Int. Ed. 2015; 54: 3061
- 115 Heuckendorff M, Pedersen CM, Bols M. Org. Lett. 2011; 13: 5956
- 116 Garcia A, Sanzone JR, Woerpel KA. Angew. Chem. Int. Ed. 2015; 54: 12087
- 117 Otte DA. L, Borchmann DE, Lin C, Weck M, Woerpel KA. Org. Lett. 2014; 16: 1566
- 118 Ramdular A, Woerpel KA. Org. Lett. 2020; 22: 4113
- 119 Ramdular A, Woerpel KA. Org. Lett. 2022; 24: 3217
- 120 Holm T. J. Org. Chem. 2000; 65: 1188
- 121 Otte DA. L, Woerpel KA. Org. Lett. 2015; 17: 3906
- 122 Bartolo ND, Woerpel KA. J. Org. Chem. 2020; 85: 7848
- 123 Martin-Esker AA, Johnson CC, Horner JH, Newcomb M. J. Am. Chem. Soc. 1994; 116: 9174
- 124 Witt CH, Woerpel KA. J. Org. Chem. 2023; 88: 12802
- 125 Bartolo ND, Woerpel KA. J. Org. Chem. 2018; 83: 10197
- 126 Bartolo ND, Read JA, Valentín EM, Woerpel KA. Synthesis 2017; 49: 3237
- 127 Read JA, Woerpel KA. J. Org. Chem. 2017; 82: 2300
- 128 Read JA, Yang Y, Woerpel KA. Org. Lett. 2017; 19: 3346
- 129 Bartolo ND, Hornstein AL, Zhao AY, Woerpel KA. Synthesis 2019; 51: 296
- 130 Bartolo ND, Read JA, Valentín EM, Woerpel KA. Chem. Rev. 2020; 120: 1513
- 131 Bartolo ND, Demkiw KM, Valentín EM, Hu CT, Arabi AA, Woerpel KA. J. Org. Chem. 2021; 86: 7203
- 132 Bartolo ND, Demkiw KM, Read JA, Valentín EM, Yang Y, Dillon AM, Hu CT, Ward MD, Woerpel KA. J. Org. Chem. 2022; 87: 3042
- 133 Chen X, Hortelano ER, Eliel EL, Frye SV. J. Am. Chem. Soc. 1992; 114: 1778
- 134 Konopelski JP, Lin JZ, Wenzel PJ, Deng HB, Elliott GI, Gerstenberger BS. Org. Lett. 2002; 4: 4121
- 135 Aggarwal VK, Olofsson B. Angew. Chem. Int. Ed. 2005; 44: 5516
- 136 Lavinda O, Witt CH, Woerpel KA. Angew. Chem. Int. Ed. 2022; 61: e202114183
- 137 Witt CH, Woerpel KA. Org. Lett. 2022; 24: 6722
- 138 Bare TM, Hershey ND, House HO, Swain CG. J. Org. Chem. 1972; 37: 997
- 139 Rychnovsky SD, Dahanukar VH. J. Org. Chem. 1996; 61: 7648