Synlett 2024; 35(16): 1924-1928
DOI: 10.1055/s-0042-1751562
letter

Regioselective Aldehyde Decarbonylation through Palladium-Catalyzed Nitrile Boronic Acid Cross-Coupling

Zachary E. Paikin
,
John M. Talbott
,
Monika Raj
This research was supported by National Institutes of Health (NIH) grants (1R35GM133719-01 and 1R01HG012941-01) to M.R. M.R. was also supported by a Research Scholar Grant (RSG-22-025-01-CDP) from the American Cancer Society.


Abstract

Aldehyde decarbonylation is a vital chemical transformation in the synthesis of natural products. Nature accomplishes this process through a family of decarbonylase enzymes, while in the laboratory, harsh transition metals and elevated temperatures are required. Herein, we report a mild aldehyde decarbonylation reaction that exhibits exclusive selectivity for ortho-aldehydes during a tandem nitrile boronic acid cross-coupling reaction. A wide substrate scope is displayed that includes regioselective removal of the ortho-aldehyde from phenyl boronic acids in the presence of meta- or para-aldehydes. A mechanistic investigation of the observed regioselectivity for ortho-aldehydes by density functional theory (DFT) calculations shows that the CO ligand extrusion is energetically more favorable for the ortho position as compared to the para position.

Supporting Information



Publication History

Received: 15 November 2023

Accepted after revision: 01 February 2024

Article published online:
14 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Eschinazi HE. Bull. Soc. Chem. Fr. 1952; 967
    • 1b Eschinazi HE, Pines H. J. Org. Chem. 1959; 24: 1369
    • 2a Jones SB, Simmons B, Mastracchio A, MacMillan DW. C. Nature 2011; 475: 183
    • 2b Berrué F, McCulloch MW. B, Kerr RG. Bioorg. Med. Chem. 2011; 19: 6702
  • 3 Hong B, Kotame P, Tsai C.-W, Liao J.-H. Org. Lett. 2010; 12: 776
  • 4 Goswami N, Bhattacharya T, Maiti D. Nat. Rev. Chem. 2021; 5: 646
  • 5 Lu H, Yu T.-Y, Xu P.-F, Wei H. Chem. Rev. 2021; 121: 365
    • 6a Tsuji J, Ohno K. Tetrahderon Lett. 1967; 8: 2173
    • 6b Doughty DH, Pignolet LH. J. Am. Chem. Soc. 1978; 100: 7083
    • 6c Kries M, Palmelund A, Bunch L, Madsen R. Adv. Synth. Catal. 2006; 348: 2148
    • 7a Bock H, Breuer O. Angew. Chem., Int. Ed. Engl. 1987; 26: 461
    • 7b Ding K, Xu S, Alotaibi R, Paudel K, Reimheiner EW, Weatherly J. J. Org. Chem. 2017; 82: 4924
    • 8a Domazetis G, Tarpey B, Dolphin D, James BR. J. Chem. Soc., Chem. Commun. 1980; 939
    • 8b Bora BR, Prakash R, Sultana S, Gogoi S. Org. Biomol. Chem. 2021; 19: 2725
    • 10a Hawthorne JO, Wilt MH. J. Org. Chem. 1960; 25: 2215
    • 10b Tsuji K, Ohno T, Kajimoto T. Tetrahedron Lett. 1965; 6: 4565
    • 10c Tsuji K, Ohno T. J. Am. Chem. Soc. 1968; 90: 94
    • 10d Wilt JW, Pawlikowski WW. Jr. J. Org. Chem. 1975; 40: 3641
    • 10e Matsubara S, Yokota Y, Oshima YK. Org. Lett. 2004; 6: 2071
    • 10f Modak A, Deb A, Patra T, Rana S, Maity S, Maiti D. Chem. Commun. 2012; 48: 4253
    • 10g Modak A, Naveen T, Maiti D. Chem. Commun. 2013; 49: 252
  • 11 Kundu PK, Dhiman M, Modak A, Chowdhury A, Polshettiwar V, Maiti D. ChemPlusChem 2016; 81: 1142
  • 12 Kolb D, Morgenstern M, König B. Chem. Commun. 2023; 59: 8592
  • 13 Akanksha Akanksha, Maiti D. Green Chem. 2012; 14: 2314
  • 14 O’Conner JM, Ma J. J. Org. Chem. 1992; 57: 5075
  • 15 Gutmann B, Elsner P, Glasnov T, Roberge DM, Kappe CO. Angew. Chem. Int. Ed. 2014; 53: 11557
  • 16 Selaković Ž, Nikolić AM, Ajdačić V, Opsenica IM. Eur. J. Org. Chem. 2022; e2102101265
  • 17 Wang X, Wang X, Liu M, Ding J, Chen J, Wu H. Synthesis 2013; 45: 2241
    • 18a Xu Z, Mao J, Zhang Y. Catal. Commun. 2008; 9: 97
    • 18b Darzi ER, White BM, Loventhal LK, Zakharov LN, Jasti R. J. Am. Chem. Soc. 2017; 139: 3106
  • 19 Wang X, Liu M, Xu L, Wang Q, Chen J, Ding J, Wu H. J. Org. Chem. 2013; 78: 5273
    • 20a Fristrup P, Kries M, Plamelund A, Norrby P.-O, Madsen R. J. Am. Chem. Soc. 2008; 130: 5206
    • 20b Modak A, Rana S, Phukan A, Maiti D. Eur. J. Org. Chem. 2017; 4168
    • 20c Xie H, Qi T, Lyu Y.-J, Zhang J.-F, Si Z.-B, Liu L.-J, Zhu L.-F, Yang H.-Q, Hu C.-W. Phys. Chem. Chem. Phys. 2021; 21: 3795
  • 21 Sheong FK, Chen W.-J, Lin Z. J. Organomet. Chem. 2015; 792: 93
  • 22 Aldehyde Decarbonylation; General Procedure To a mixture of THF:H2O (5:1) in a 35 mL high-pressure tube, TFA (10 equiv.) was added followed by the addition of nitrile 1 (1 equiv.), formyl phenyl boronic acid 2 (4 equiv.), and 2,2′-bipyridyl ligand (40 mol%). The mixture was left to stir until all compounds had dissolved, after which N2 was bubbled for 5 minutes. Finally, Pd(OAc)2 (20 mol%) was transferred to the reaction vessel (order of addition reduces oxidative homocoupling of boronic acid). The high-pressure tube was again flushed with N2 and the contents left to stir for 24 hours at 80 °C. The reaction progress was monitored by TLC. After completion of the reaction, the mixture was diluted with EtOAc (10 mL), extracted with brine (3 × 15 mL), dried over Na2SO4, and evaporated. The crude reaction mixture was then purified by silica gel column chromatography (EtOAc/hexane gradient), and the resulting products were characterized by NMR.