Subscribe to RSS
DOI: 10.1055/s-0042-1751562
Regioselective Aldehyde Decarbonylation through Palladium-Catalyzed Nitrile Boronic Acid Cross-Coupling
This research was supported by National Institutes of Health (NIH) grants (1R35GM133719-01 and 1R01HG012941-01) to M.R. M.R. was also supported by a Research Scholar Grant (RSG-22-025-01-CDP) from the American Cancer Society.
Abstract
Aldehyde decarbonylation is a vital chemical transformation in the synthesis of natural products. Nature accomplishes this process through a family of decarbonylase enzymes, while in the laboratory, harsh transition metals and elevated temperatures are required. Herein, we report a mild aldehyde decarbonylation reaction that exhibits exclusive selectivity for ortho-aldehydes during a tandem nitrile boronic acid cross-coupling reaction. A wide substrate scope is displayed that includes regioselective removal of the ortho-aldehyde from phenyl boronic acids in the presence of meta- or para-aldehydes. A mechanistic investigation of the observed regioselectivity for ortho-aldehydes by density functional theory (DFT) calculations shows that the CO ligand extrusion is energetically more favorable for the ortho position as compared to the para position.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751562.
- Supporting Information
Publication History
Received: 15 November 2023
Accepted after revision: 01 February 2024
Article published online:
14 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Eschinazi HE. Bull. Soc. Chem. Fr. 1952; 967
- 1b Eschinazi HE, Pines H. J. Org. Chem. 1959; 24: 1369
- 2a Jones SB, Simmons B, Mastracchio A, MacMillan DW. C. Nature 2011; 475: 183
- 2b Berrué F, McCulloch MW. B, Kerr RG. Bioorg. Med. Chem. 2011; 19: 6702
- 3 Hong B, Kotame P, Tsai C.-W, Liao J.-H. Org. Lett. 2010; 12: 776
- 4 Goswami N, Bhattacharya T, Maiti D. Nat. Rev. Chem. 2021; 5: 646
- 5 Lu H, Yu T.-Y, Xu P.-F, Wei H. Chem. Rev. 2021; 121: 365
- 6a Tsuji J, Ohno K. Tetrahderon Lett. 1967; 8: 2173
- 6b Doughty DH, Pignolet LH. J. Am. Chem. Soc. 1978; 100: 7083
- 6c Kries M, Palmelund A, Bunch L, Madsen R. Adv. Synth. Catal. 2006; 348: 2148
- 7a Bock H, Breuer O. Angew. Chem., Int. Ed. Engl. 1987; 26: 461
- 7b Ding K, Xu S, Alotaibi R, Paudel K, Reimheiner EW, Weatherly J. J. Org. Chem. 2017; 82: 4924
- 8a Domazetis G, Tarpey B, Dolphin D, James BR. J. Chem. Soc., Chem. Commun. 1980; 939
- 8b Bora BR, Prakash R, Sultana S, Gogoi S. Org. Biomol. Chem. 2021; 19: 2725
- 9a Iwai T, Fujihara T, Tsuji Y. Chem. Commun. 2008; 46: 6215
- 9b Olsen EP. K, Madsen R. Chem. Eur. J. 2012; 18: 16023
- 10a Hawthorne JO, Wilt MH. J. Org. Chem. 1960; 25: 2215
- 10b Tsuji K, Ohno T, Kajimoto T. Tetrahedron Lett. 1965; 6: 4565
- 10c Tsuji K, Ohno T. J. Am. Chem. Soc. 1968; 90: 94
- 10d Wilt JW, Pawlikowski WW. Jr. J. Org. Chem. 1975; 40: 3641
- 10e Matsubara S, Yokota Y, Oshima YK. Org. Lett. 2004; 6: 2071
- 10f Modak A, Deb A, Patra T, Rana S, Maity S, Maiti D. Chem. Commun. 2012; 48: 4253
- 10g Modak A, Naveen T, Maiti D. Chem. Commun. 2013; 49: 252
- 11 Kundu PK, Dhiman M, Modak A, Chowdhury A, Polshettiwar V, Maiti D. ChemPlusChem 2016; 81: 1142
- 12 Kolb D, Morgenstern M, König B. Chem. Commun. 2023; 59: 8592
- 13 Akanksha Akanksha, Maiti D. Green Chem. 2012; 14: 2314
- 14 O’Conner JM, Ma J. J. Org. Chem. 1992; 57: 5075
- 15 Gutmann B, Elsner P, Glasnov T, Roberge DM, Kappe CO. Angew. Chem. Int. Ed. 2014; 53: 11557
- 16 Selaković Ž, Nikolić AM, Ajdačić V, Opsenica IM. Eur. J. Org. Chem. 2022; e2102101265
- 17 Wang X, Wang X, Liu M, Ding J, Chen J, Wu H. Synthesis 2013; 45: 2241
- 18a Xu Z, Mao J, Zhang Y. Catal. Commun. 2008; 9: 97
- 18b Darzi ER, White BM, Loventhal LK, Zakharov LN, Jasti R. J. Am. Chem. Soc. 2017; 139: 3106
- 19 Wang X, Liu M, Xu L, Wang Q, Chen J, Ding J, Wu H. J. Org. Chem. 2013; 78: 5273
- 20a Fristrup P, Kries M, Plamelund A, Norrby P.-O, Madsen R. J. Am. Chem. Soc. 2008; 130: 5206
- 20b Modak A, Rana S, Phukan A, Maiti D. Eur. J. Org. Chem. 2017; 4168
- 20c Xie H, Qi T, Lyu Y.-J, Zhang J.-F, Si Z.-B, Liu L.-J, Zhu L.-F, Yang H.-Q, Hu C.-W. Phys. Chem. Chem. Phys. 2021; 21: 3795
- 21 Sheong FK, Chen W.-J, Lin Z. J. Organomet. Chem. 2015; 792: 93
- 22 Aldehyde Decarbonylation; General Procedure To a mixture of THF:H2O (5:1) in a 35 mL high-pressure tube, TFA (10 equiv.) was added followed by the addition of nitrile 1 (1 equiv.), formyl phenyl boronic acid 2 (4 equiv.), and 2,2′-bipyridyl ligand (40 mol%). The mixture was left to stir until all compounds had dissolved, after which N2 was bubbled for 5 minutes. Finally, Pd(OAc)2 (20 mol%) was transferred to the reaction vessel (order of addition reduces oxidative homocoupling of boronic acid). The high-pressure tube was again flushed with N2 and the contents left to stir for 24 hours at 80 °C. The reaction progress was monitored by TLC. After completion of the reaction, the mixture was diluted with EtOAc (10 mL), extracted with brine (3 × 15 mL), dried over Na2SO4, and evaporated. The crude reaction mixture was then purified by silica gel column chromatography (EtOAc/hexane gradient), and the resulting products were characterized by NMR.