RSS-Feed abonnieren
DOI: 10.1055/s-0042-1751572
The FeBr3-Catalyzed Transfer Hydrogenation of Styrene Derivatives under Mild Reaction Conditions
Abstract
The transfer hydrogenation of alkenes was realized by using a simple transition-metal compound (FeBr3) and 1,4-cyclohexadiene (1,4-CHD) as the hydrogen donor. The conversion of a number of di- and trisubstituted alkenes was investigated, and even a tetrasubstituted alkene was successfully converted. Compared with previously published work with the more expensive InBr3, the reaction times were considerably reduced and significantly milder reaction conditions could be applied. Interestingly, a transformation that was catalytic in 1,4-CHD, with molecular hydrogen as a stoichiometric reducing agent at 1 bar, was also accomplished.
Key words
addition reaction - alkenes - iron catalysis - hydrogenation - transfer hydrogenation - cyclohexadieneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751572.
- Supporting Information
Publikationsverlauf
Eingereicht: 08. Februar 2024
Angenommen nach Revision: 19. Februar 2024
Artikel online veröffentlicht:
01. März 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Walker JC. L, Oestreich M. Synlett 2019; 30: 2216
- 1b Keess S, Oestreich M. Chem. Sci. 2017; 8: 4688
- 2a Chatterjee I, Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 1965
- 2b Chatterjee I, Qu Z.-W, Grimme S, Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 12158
- 2c Yuan W, Orecchia P, Oestreich M. Chem. Commun. 2017; 53: 10390
- 2d Djurovic A, Vayer M, Li Z, Guillot R, Baltaze J.-P, Gandon V, Bour C. Org. Lett. 2019; 21: 8132
- 2e Simonneau A, Friebel J, Oestreich M. Eur. J. Org. Chem. 2014; 2077
- 2f Simonneau A, Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 11905
- 2g Webb JD, Laberge VS, Geier SJ, Stephan DW, Crudden CM. Chem. Eur. J. 2010; 16: 4895
- 2h Michelet B, Bour C, Gandon V. Chem. Eur. J. 2014; 20: 14488
- 2i Mohr J, Oestreich M. Angew. Chem. Int. Ed. 2014; 53: 13278
- 2j Macdonald PA, Banerjee S, Kennedy AR, van Teijlingen A, Robertson SD, Tuttle T, Mulvey RE. Angew. Chem. Int. Ed. 2023; 62: e202304966
- 3a Walker JC. L, Oestreich M. Org. Lett. 2018; 20: 6411
- 3b Li L, Hilt G. Org. Lett. 2020; 22: 1628
- 3c Li L, Hilt G. Chem. Eur. J. 2021; 27: 11221
- 4 Wolff B, Qu Z.-W, Grimme S, Oestreich M. Angew. Chem. Int. Ed. 2023; 62: e202305295
- 5 Hilt G. Synlett 2023; 34: 23
- 6 Transfer Hydrogenation of Alkenes: General Procedure A flask was charged FeBr3 (59.1 mg, 0.2 mmol, 20 mol%) and flushed with N2. DCM (1 mL), the appropriate alkene (1 mmol, 1.0 equiv), and 1,4-cyclohexadiene (104 μL, 1.1 mmol, 1.1 equiv) were added sequentially, and the mixture was stirred at 20 °C until the reaction was complete (GC/MS). The mixture was then purified directly by flash column chromatography (silica gel, pentane). 2,3-Diphenylbutane (2p) Colorless oil; yield: 173 mg (92%); Rf = 0.45 (pentane). 1H NMR (500 MHz, CDCl3): δ = 7.41–7.34 (m, 4 H), 7.31–7.24 (m, 6 H), 2.87 (dtd, J = 6.4, 4.6, 2.6 Hz, 2 H), 1.13–1.07 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 146.6, 128.4, 127.8, 126.2, 47.4, 21.2.
- 7a Sauvet G, Vairon JP, Sigwalt P. Bull. Soc. Chim. Fr. 1970; 11: 4031
- 7b Tolbert LM. J. Am. Chem. Soc. 1980; 102: 3531
- 8a Gieshoff TN, Villa M, Welther A, Plois M, Chakraborty U, Wolf R, Jacobi von Wangelin A. Green Chem. 2015; 17: 1408
- 8b MacNair AJ, Tran M.-M, Nelson JE, Sloan GU, Ironmonger A, Thomas SP. Org. Biomol. Chem. 2014; 12: 5082
- 8c Lu P, Ren X, Xu H, Lu D, Sun Y, Lu Z. J. Am. Chem. Soc. 2021; 143: 12433
- 8d Xu R, Chakraborty S, Bellows SM, Yuan H, Cundari TR, Jones WD. ACS Catal. 2016; 6: 2127
For reviews covering not only transfer hydrogenation, but also other transfer reactions, see:
For iron-catalyzed hydrogenations of alkenes, see: