RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2023; 34(17): 1991-1996
DOI: 10.1055/s-0042-1752717
DOI: 10.1055/s-0042-1752717
letter
Cyanation and Hydrolysis Cascade of Aryl Bromides with Cuprous Cyanide to Access Primary Amides
This work was supported by Zhejiang Multinpharma Co. Ltd. (KYY-HX-20190007), the National Natural Science Foundation of China (No. 22208302), and the Natural Science Foundation of Zhejiang Province of China (Nos. LQ21B020006, ZJ2022039).
Abstract
A convenient and efficient approach for the cyanation and hydrolysis of aryl bromides to afford primary amides was developed, in which cuprous cyanide is used as a cyanide source and a catalyst. It has the advantages of excellent functional-group compatibility, medium to high yields, a one-pot procedure, and a non-noble-metal catalyst. The reaction could be performed on a gram scale to give N-allyl-N-methyl-5-nitroisophthalamide in a 73% yield.
Key words
primary amides - aryl bromides - copper(I) cyanide - copper catalysis - one-pot reaction - late-stage modificationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1752717.
- Supporting Information
Publikationsverlauf
Eingereicht: 07. April 2023
Angenommen nach Revision: 10. Mai 2023
Artikel online veröffentlicht:
04. Juli 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Matsuda F. CHEMTECH 1977; 7: 306
- 1b The Amide Linkage: Selected Structural Aspects in Chemistry, Biochemistry, and Materials Science, Greenberg A., Breneman C. M., Liebman J. F. Wiley-Interscience; New York: 2000
- 1c Pattabiraman VR, Bode JW. Nature 2011; 480: 471
- 2a Toral-Sánchez E, Ascacio Valdés JA, Aguilar CN, Cervantes FJ, Rangel-Mendez JR. Carbon 2016; 99: 456
- 2b Korolev DV, Postnov VN, Evreinova NV, Babikova KY, Naumysheva EB, Shulmeister GA, Magruk MA, Mishanin VI, Toropova YG, Gareev KG, Murin IV. Russ. J. Gen. Chem. 2018; 88: 2698
- 2c Wang M, Fan Q, Jiang X. Green Chem. 2018; 20: 5469
- 2d Xu G, Shen H, Tong T, Lu A, Gou S. Synth. Commun. 2010; 40: 2564
- 2e Ramachandran PV, Hamann HJ. Org. Lett. 2021; 23: 2938
- 2f Gold EH, Chang W, Cohen M, Baum T, Ehrreich S, Johnson G, Prioli N, Sybertz EJ. J. Med. Chem. 1982; 25: 1363
- 3a Khalafi-Nezhad A, Parhami A, Soltani R, Zarea A. Tetrahedron Lett. 2005; 46: 6879
- 3b Jaita S, Phakhodee W, Chairungsi N, Pattarawarapan M. Tetrahedron Lett. 2018; 59: 3571
- 3c Ke F, Xu Y, Zhu S, Lin X, Lin C, Zhou S, Su H. Green Chem. 2019; 21: 4329
- 4a Yamaguchi K, Matsushita M, Mizuno N. Angew. Chem. Int. Ed. 2004; 43: 1576
- 4b Kim ES, Lee HS, Kim SH, Kim JN. Tetrahedron Lett. 2010; 51: 1589
- 4c Chen H, Dai W, Chen Y, Xu Q, Chen J, Yu L, Zhao Y, Yea M, Pan Y. Green Chem. 2014; 16: 2136
- 5a Gnanamgari D, Crabtree RH. Organometallics 2009; 28: 922
- 5b Sun C, Qu P, Li F. Catal. Sci. Technol. 2014; 4: 988
- 5c Xu F, Song Y.-Y, Li Y.-J, Li E.-L, Wang X.-R, Li W.-Y, Liu C.-S. ChemistrySelect 2018; 3: 3474
- 6a Ana M.-A, Yus M, Ramón DJ. Tetrahedron 2012; 68: 3948
- 6b Rostamnia S, Nouruzi N, Xin H, Luque R. Catal. Sci. Technol. 2015; 5: 199
- 6c Kamble RB, Mane KD, Rupanawar BD, Korekar P, Sudalaiab A, Suryavanshi G. RSC Adv. 2020; 10: 724
- 7a Wu X.-F, Bheeter CB, Neumann H, Dixneuf PH, Beller M. Chem. Commun. 2012; 48: 12237
- 7b Poeschl A, Mountford DM. Org. Biomol. Chem. 2014; 12: 7150
- 7c Joshi A, Kumar R, Semwal R, Rawata D, Adimurthy S. Green Chem. 2019; 21: 962
- 7d Gumus I, Aslan M. Polyhedron 2021; 210: 115496
- 8a Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
- 8b Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
- 8c Schoenberg A, Heck RF. J. Am. Chem. Soc. 1974; 96: 7761
- 9 Xu T, Alper H. Tetrahedron Lett. 2013; 54: 5496
- 10 Qi X, Ai H.-J, Cai C.-X, Peng J.-B, Ying J, Wu X.-F. Eur. J. Org. Chem. 2017; 7222
- 11 Suresh AS, Baburajan P, Ahmed M. Tetrahedron Lett. 2015; 56: 4864
- 12 Jadhav VG, Bhojane JM, Nagarkar JM. RSC Adv. 2015; 5: 6636
- 13 Sharif M, Wu X.-F. RSC Adv. 2015; 5: 21001
- 14 Kwon E.-M, Kim C.-G, Goh A.-R, Park J, Jun J.-G. Bull. Korean Chem. Soc. 2012; 33: 1939
- 15a Hibbard JP, Yam JG, Alsalek EB, Bahamonde A. J. Org. Chem. 2022; 87: 12036
- 15b Guirado A, López-Caracena L, López-Sánchez JI, Sandoval J, Vera M, Bautista D, Gálvez J. Tetrahedron 2016; 72: 8055
- 16 Zhang N, Huang M.-Z, Liu A.-P, Liu M.-H, Li L.-Z, Zhou C.-G, Ren Y.-G, Ou X.-M, Long C.-Y, Sun J, Dang M.-M, Lan Z.-L. Chem. Pap. 2020; 74: 963
- 17 Bastos GA, de Mattos MC. S. Tetrahedron Lett. 2021; 83: 153422
- 18 Fan D, Wang B, Stelitano G, Savková K, Shi R, Huszár S, Han Q, Mikusová K, Chiarelli LR, Lu Y, Qiao C. J. Med. Chem. 2021; 64: 14526
- 19 Kazuaki S. Bull. Chem. Soc. Jpn. 1985; 58: 838
- 20 Corey EJ, Guzman-Perez A, Noe MC. J. Am. Chem. Soc. 1995; 117: 10805
- 21a Do H.-Q, Daugulis Q. Org. Lett. 2010; 12: 2517
- 21b Wang L, Pan L, Chen Q, He M. Chin. J. Chem. 2014; 32: 1221
- 21c Liu S.-Z, Li J, Xue C.-G, Xu X.-T, Lei L.-S, Huo C.-Y, Wang Z, Wang S.-H. Tetrahedron Lett. 2021; 65: 152749
- 21d Cheng H.-c, Zhou L, Zhou X, Ma J.-l, Guo P, Zhang Y, Ji H.-b. Tetrahedron Lett. 2021; 71: 153048
- 22 Aromatic Amides 2a–x; General Procedure A dry two-necked flask was charged with the appropriate bromide 1a–x (3.0 mmol, 1.0 equiv), Et3N (485.6 mg, 4.8 mmol, 1.6 equiv), CuCN (483.6 mg, 5.4 mmol, 1.8 equiv), and H2O (0.6 mL) under a positive pressure of N2, and then subjected to three evacuation/backfilling cycles under high vacuum. Ultra-dry NMP (6.0 mL) was injected into the flask from a syringe, and the flask was placed in a preheated oil bath at 170 ℃ for 18–24 h while the progress of the reaction was monitored by TLC. The mixture was then cooled to r.t., diluted with sat. aq NaCl (15 mL) and EtOAc (15 mL), and filtered through a layer of Celite, eluting with EtOAc. The filtrate was extracted with EtOAc (3 × 30 mL), and the combined organic layers were washed with H2O and sat. aq NaCl, then dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (1.2:1, v/v)]. Benzamide (2a) Colorless flake crystals; yield: 294.4 mg (81%). 1H NMR (400 MHz, DMSO-d6 ): δ = 7.97 (s, 1 H), 7.89–7.86 (m, 2 H), 7.54–7.51 (m, 1 H), 7.44 (dd, J = 8.0, 6.6 Hz, 2 H), 7.36 (s, 1 H). 13C{1H} NMR (100 MHz, DMSO-d6 ): δ = 167.9, 134.3, 131.2, 128.2, 127.5. HRMS (ESI-TOF): m/z [M + H]+ calcd for C7H8NO: 122.0600; found: 122.0603.